

Mount Alexander Shire Council

Castlemaine Landfill Odour and Buffer Assessment

May 2016

Table of contents

1.	. Introduction			
	1.1	Scope and limitations	1	
	1.2	Assumptions	2	
	1.3	Report structure	2	
2.	Site	location and context	3	
	2.1	Site location	3	
	2.2	Current operations	3	
3.	Mete	eorology	6	
	3.1	Climate and topography	6	
	3.2	TAPM modelling	6	
	3.3	CALMET modelling	7	
	3.1	Regional climate and prevailing meteorology	8	
	3.2	Pattern of atmospheric stability	11	
4.	Envi	ronmental Guidelines	14	
	4.1	Air quality criteria	14	
	4.2	Victorian Buffer Guidelines	14	
5.	Emis	ssion inventory	21	
	5.1	Landfill odour emission rates	21	
	5.2	Upset scenarios	27	
6.	Disp	ersion modelling	29	
	6.1	Model	29	
	6.2	Model configuration and parameter selection	29	
	6.3	Predicted peak off-site odour impact – normal operations	30	
	6.4	Upset scenario	32	
	6.5	Predicted exposure at nearby residences – routine & upset conditions	34	
7.	Odo	ur environmental risk assessment	35	
	7.1	Background	35	
	7.2	Approach to ERA for odour impact	35	
	7.3	Risk descriptors	35	
	7.4	Outcomes of ERA for odour impact	37	
8.	Cond	clusions and recommendations	41	
	8.1	Conclusions	41	
	8.2	Recommendation	41	

Table index

Table 1	TAPM model parameters	7
Table 2	Summary of CALMET model parameters	8
Table 3	Stability Category Relationship to Wind Speed, and Stability Characteristics	12
Table 4	Design criterion for gaseous boiler emissions	14
Table 5	Required buffer distances specified by the Landfill BPEM	16
Table 6	Landfill Size-Classes ¹	18
Table 7	Classification of landfills on throughput ¹	18
Table 8	Odour Emission Rate Survey – 7 April 2016	25
Table 9	SOER Data for Municipal Tipping Face	26
Table 10	SOER Data for Greenwaste Pile	27
Table 11	Landfill Source Odour Emission rates	27
Table 12	Predicted peak (99 th percentile, short term averaged) odour impact at nearby receptors	34
Table 13	Risk matrix in EPA broiler farm OERA	35

Figure index

Figure 1	Site location	5
Figure 2	Local terrain surrounding the site	9
Figure 3	Annual wind rose – Landfill site (CALMET)1	0
Figure 4	Seasonal wind roses – Landfill Site (CALMET)1	1
Figure 5	Annual stability rose for the Landfill Site (CALMET)1	3
Figure 6	Default Buffers1	7
Figure 7	De-rated Buffer	20
Figure 8	Photos of Castlemaine Landfill 7 April 20162	24
Figure 9	Predicted off-site odour impact - Normal Operations	31
Figure 10	Predicted off-site odour impact - Upset Operations	33
Figure 11	ERA for normal operations	39
Figure 12	ERA for upset scenario4	0
Figure 13	Recommended site-specific buffer for Castlemaine Landfill4	3

Appendices

- Appendix A Ektimo report
- Appendix B Back- Calculation procedure SOER of landfill tipping face and greenwaste pile
- Appendix C CALMET input file
- Appendix D CALPUFF input file

1. Introduction

GHD was engaged by the Mount Alexander Shire Council (MASC) to conduct an odour and buffer assessment for the Castlemaine Landfill at Sluicers Road, Castlemaine, Victoria. The landfill accepts kerbside putrescible waste from council kerbside rubbish bins. The current facility accepts 3,000 tonnes per year.

As part of the Diamond Gully Structure Plan (DGSP), a 200 m exclusion buffer was recommended for the landfill, with areas outside of this buffer identified for future residential use. However, the EPA Victoria (EPA) objected to the 200 m buffer on the basis that it considers a 500 m buffer should apply, with any reduction being dependent on odour modelling. The Planning Panel C56 has subsequently recommended that the DGSP be revised to include the 500 m landfill buffer as recommended by EPA.

Air quality associated with the landfill has the potential to be the major environmental issue. Generally, odour poses the critical constraint with respect to the available separation distance to nearby residences.

This report comprises odour modelling and an odour environmental risk assessment based on site-specific operations, with the purpose to assess whether it is appropriate to reduce the 500 m buffer to allow future residential development closer to the landfill. EPA has accepted the methodology proposed by GHD for this assessment¹.

The assessment was conducted with reference to:

- State Environment Protection Policy Air Quality Management (SEPP AQM)
- EPA Publication 1509, Broiler Farm Odour Environmental Risk Assessment, November 2012

This report should be read in conjunction with the limitations presented in section 1.1 and the assumptions provided in section 1.2 and elsewhere in the report.

1.1 Scope and limitations

This report has been prepared by GHD Pty Ltd (GHD) for the Mount Alexander Shire Council (Council) and may only be used and relied on by Council for the purpose agreed between GHD and Council as set out in section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Council arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

¹ EPA Memo from Gavin Fisher, Air Quality Scientist, 8 February 2016

The opinions, conclusions and any recommendations in this report are based on explicit assumptions made by GHD, described in section 1.2 and throughout the body of this document, and limitations of the modelling software CALPUFF. GHD disclaims liability arising from any of the assumptions being incorrect. GHD has prepared this report based on information provided by Council and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report, which were caused by errors, or omissions in that information.

1.2 Assumptions

The major assumptions used in this assessment are as follows:

- Meteorological data was synthesised for upper atmospheric conditions from the CSIRO prognostic model TAPM (The Air Pollution Model) for the year 2012 at a horizontal spatial resolution of 1 km.
- The coarse 1 km resolution meteorology was refined to a spatial resolution of 400 m using the diagnostic model CALMET V 5. CALMET was configured in "No Obs" mode.
- The odour dispersion modelling using the NSW EPA and US EPA approved regulatory Gaussian puff dispersion model CALPUFF V 5, was considered appropriate for the location and approved for use in this project by EPA.
- The emissions inventory and dispersion modelling is based on data measured on site at the Castlemaine Landfill under normal operations by Ektimo emission testing consultants. Actual measurements are dependent on site conditions at the time of measurement and these conditions may change. GHD does not accept any responsibility for updating the measurements, modelling or reporting after measurements have been taken.
- Odour emissions from the major sources of odour were modelled as both variable emission and fixed area sources in CALPUFF with appropriate dispersion characteristics.

1.3 Report structure

This report:

- Describes the operations of the current facility
- Describes the site-representative meteorological data
- Assesses the separation distance of the facility
- Presents the results of odour dispersion modelling for the facility using CALPUFF for normal operations and for selected plausible upset scenarios
- Presents a summary of the results and draws conclusions as to the off-site odour impact
- Presents the results of the odour environmental risk assessment (OERA) based on the outcomes of the dispersion modelling
- Recommends the appropriate buffer distance to apply to the landfill
- Outlines the limitations of the analyses and conclusions presented

2. Site location and context

2.1 Site location

Figure 1 shows the location of the facility in Castlemaine, Victoria. It is located approximately 120 km northwest from Melbourne and is approximately 2.5 km southwest from the town centre of Castlemaine.

The land uses surrounding the sites include:

- Residential (southeast, east)
- Light industrial and sewage treatment plant (north)
- Vacant land (west, southwest)
- A quarry (west)

The local sewage treatment plant (operated by Coliban Water) is located 140 m to the northeast, while a former quarry, (now rock wholesaler) is located approximately 120 m to the west.

2.1.1 Nearby rural residences

The nearest existing dwelling is one singe residential property (R6) located approximately 90 m south west of the site boundary and a historic homestead (unoccupied) on the corner of Diamond Gully Road and Sluicers Road, approximately 150 m from the property boundary (R5). The nearest existing multiple dwelling residential development is located off Honeycomb Road, approximately 250 m to the southeast. Other than the R5 and R6, there are no other residential properties located within 200 m of the landfill. Seventeen residences were identified in proximity to the facility as shown in Figure 1. These residences qualify as sensitive receptors, as defined by EPA Victoria (EPA VIC, 2014), which includes residential premises, childcare centres, preschools, primary schools, education centres or informal outdoor recreation sites.

The DGSP consists of 182 hectares which is located immediately west of the existing Sluicers Road landfill site with the majority of the proposed area to be used for residential uses.

2.2 Current operations

The landfill was constructed in 1995 and has an area of approximately nine hectares. The landfill's estimated lifespan is 30 years with a planned total airspace of 533,400 m³. The site is an EPA licensed site (EP Licence ES2449) that consists of the landfill, a waste transfer station and recycling area (including a resale area). The landfill is licenced to accept:

- Solid inert waste
- Putrescible wastes
- Asbestos waste of domestic origin
- Pneumatic automatic tyres shredded into pieces less than 250 mm in all diameters
- Category C prescribed industrial waste (PIW)

The landfill throughput is approximately 3,000 tonnes/year². On average, there are three truckloads of waste delivered daily (Monday to Friday) with the majority arriving between 10 am and 12 pm. The tipping face is left uncovered between 10 am and 2 pm daily (Monday to Friday) with an average area of 10 m x 10 m.

² Based on the amount of waste delivered by Wheelie Waste in 2015

Wastes are deposited at the tipping face daily and are covered at the end of each day's operations by 150 mm of soil/compost. At the end of each week, all wastes are covered with a layer of soil 300 mm thick.

G:\31\33897\GIS\Maps\Working

G:\31\33897\GIS\Maps\Working © 2008. While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN(S), make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN(S) cannol accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurata, incomplete or unsultable in any way and for any reason.

Google Earth Imagery 2016. Created by: M.A

3. Meteorology

3.1 Climate and topography

The characterisation of local wind patterns requires accurate site-representative hourly recordings of wind direction and speed over a period of at least a year. There is a substantial distance to the nearest meteorological observation data at Redesdale (BoM), with Redesdale located over 30 kilometres to the east and significant intervening drainage lines in between.

The initial site visit by GHD established that there was no on-site anemometer, however it was observed that the Castlemaine WWTP, located some 450 m to the north-northeast, had an anemometer installed onsite. Enquiries were made to Coliban Water and a five-year dataset of wind speed wind direction and temperature was made available. Unfortunately, detailed examination of that data showed that the recorded data was influenced by the wake of the building adjacent to the anemometer mast. The effect was to distort the pattern of wind direction and it was decided that the data could not be relied on for the odour modelling.

In this situation where there is a lack of site-representative data, the approach is to synthesise a 12 month meteorological dataset using TAPM and CALMET.

The selected model year of 2012 was chosen based on the following considerations:

- A recent year no older than a decade
- Avoid the strong multi-year La Nina event of 2010-11³
- Exclude excessively wet or dry years/months
- A 'normal' monthly pattern of rainfall a strong correlation of recorded monthly totals against corresponding monthly long-term medians (correlation coefficient > 0.70)
- Annual rainfall within ~30% of median (70% to 130%)

3.2 TAPM modelling

The prognostic model TAPM (The Air Pollution Model by CSIRO) was used to derive the initialising atmospheric conditions around the site for input into CALMET. TAPM was set up according to the specifications in Table 1. The period for the year 2012 was selected for modelling based on the representativeness of the year, according to the above criterion.

³ From: http://www.bom.gov.au/climate/enso/Inlist/index.shtml

[&]quot;The 2010–11 La Niña event consisted of two peaks over successive summers; the 2010–11 peak was one of the strongest on record, comparable in strength with the events of 1917–18, 1955–56 and 1975–76. In October and December 2010, and February and March 2011, monthly Southern Oscillation Index values were the highest on record (records commenced in 1876). 2010 and 2011 were the third-wettest and second-wettest calendar years on record for Australia, with 703 mm and 708 mm respectively, both well above the long-term average of 465 mm.

Table 1 TAPM model parameters

Parameter	Value		
Modelled Year	2012		
Domain centre	UTM: 55 S 250,610 m E, 5,892,795 m N Latitude = 37°5' S Longitude = 144°12' E		
Number of vertical levels	25		
Number of Easting Grid Points	41		
Number of Northing Grid Points	41		
Outer Grid Spacing	30,000 m x 30,000 m		
Number of Grid Levels	4		
Grid Level Horizontal Resolution	Level 1 – 10,000 m Level 2 – 3,000 m Level 3 – 1,000 m		

However, GHD has found from previous studies that TAPM does not predict light wind conditions as well as CALMET. These meteorological conditions give rise to the upper percentile odour impacts, (i.e. top 0.1 per cent), and are critical for the correct prediction of odour impact.

Upon completion of the broad scale TAPM modelling runs, a CALMET simulation was set up to run for the year 2012, combining the three dimensional gridded data output from the TAPM model and using the CALTAPM conversion utility available with CALMET. This approach is consistent with NSW OEH (2011) guidance documentation.

3.3 CALMET modelling

CALMET (version 5.8) is the 3D meteorological model pre-processor to the CALPUFF (version 5.8) 3D puff based dispersion model. CALMET includes a diagnostic wind field generator, with algorithms to generate slope flows, kinematic terrain effects (wind channeling), terrain blocking effects (stagnation) and also divergence minimisation (mass consistency) over spatially varying land uses and types.

CALMET also includes separate micrometeorological models to characterise both the overland and over water atmospheric boundary layers. The sub-models each formulate the evolution of spatially varying temperature profiles and the heights of the different mixed layers both over water and overland, and at the Thermal Internal Boundary Layer (TIBL) interface between them through a process of upwind spatial averaging. They also generate parameters that characterise the atmospheric stability within and above these layers. This meteorological, micrometeorological and land use information is passed to the CALPUFF dispersion model so that the manner in which emission plumes are transported and dispersed in the atmosphere can be assessed.

The US EPA approved version of CALMET (Version 5.8) was used to resolve the wind field at the site to a 400 m spatial resolution. The application of CALMET for this purpose is an approved modelling approach in New South Wales Approved Methods, (Department of Environment and Conservation, 2005) with model guidance documentation provided (Office of Environment and Heritage, 2011).

All CALMET settings were selected as per the CALPUFF guidance document OEH (2011) for "Hybrid" mode, except for the following:

- Kinematic effects were computed (IKINE = 1)
- O'Brien adjustment for vertical velocity smoothing (IOBR = 1)
- Observations were input, to account for onsite meteorological measurements

The undulating nature of the terrain means that hills and valleys create flow divergence and convergence as the wind moves around the natural obstacles. A better representation of the vertical velocity was required (by setting IKINE =1) to maintain mass consistency and to more accurately represent the situations of "plume diversion" around elevated terrain.

The TERRAD variable was set to a value of 10.0 km based on an inspection of the terrain elevations in the immediate vicinity of the site, according to OEH (2011) guidance.

The CALMET model parameters are summarised in Table 2 with the full input file in Appendix C.

Parameter	Value	
Mode	No observations (No Obs)	
UTM Zone	55 S	
Southwest corner	Easting: 238.610 km Northing: 5880.795 km	
Domain Size	60 x 60 at 0.4 km resolution (24.0 km x 24.0 km)	
Modelled Year	2012	
Number of vertical levels	11	
Vertical Levels (m)	20, 40, 60, 90, 120, 180, 250, 500, 1000, 2000, 3000	
CALMET Settings for Obs Mode (OEH, 2011)	TERRAD = 5.0 km Kinematic Effects O'Brien Vertical Velocity Adjustment	

Table 2 Summary of CALMET model parameters

3.1 Regional climate and prevailing meteorology

The local climate at the landfill site is influenced by the broader regional patterns of synoptic pressure and wind with embedded weather systems. Synoptic features vary in intensity and location according to the season. For instance, during summer a high-pressure belt is usually found over, or just to the south of, Australia, bringing warm weather while the subtropical easterlies cover most of the continent. In winter, the subtropical high-pressure belt is usually located further north over the continent, allowing westerly winds and occasional to frequent strong cold fronts to affect southern Australia.

The terrain surrounding the site is shown in Figure 2, with the site in blue and the meteorological grid in CALMET at spacing of 400 metres. The grid extends 24 kilometres in all directions from the site and influences local wind patterns as described in the following sections.

Figure 2 Local terrain surrounding the site

3.1.1 Wind pattern

The local meteorology largely influences the pattern of offsite odour impact on receptors. The effect of wind on odour dispersion patterns can be examined using the wind and stability class distributions at the site from the dataset that is produced by CALMET. The winds at a site are displayed by means of wind rose and stability rose plots, giving the distribution of winds and the wind speeds from these directions as well as the distribution of the stability classes.

The features of particular interest in this assessment are: (i) the dominant wind directions and (ii) the relative incidence of stable light wind conditions that yield minimal mixing, which defines peak impacts from ground-based sources.

3.1.2 Annual and seasonal variation in wind

Annual

The average wind rose for the entire data period is shown in Figure 3 and indicates the following features at the landfill site:

- Annual average wind speed of 3.0 m/s
- Winds are most prevalent from the north and north-northwest, southwest and south
- Winds are least prevalent from the east and northwest
- Light winds (shown in black) are more prevalent from the south and north
- Drainage flows occurring during night-time stable conditions are dominated by Campbells
 Creek

Figure 3 Annual wind rose - Landfill site (CALMET)

Seasonal

The seasonal variation within the annual pattern is shown by seasonal wind roses in Figure 4. There are several significant seasonal features:

- In summer, winds are predominantly from the southwest and northeast, with strongest winds from the southwest
- In winter, the dominance of the southerlies winds is still evident, but a higher incidence of winds is observed from the north. Average wind speed is also lower than that of summer
- In spring and autumn, the lighter southerly winds remain dominant along with stronger winds from the southwest, but with a higher incidence of stronger westerly winds peaking in spring
- Light southerly winds (aligning to the Campbell Creek valley axis) predominate in all seasons but are most marked in spring and autumn

Summer – average speed 3.4 m/s

Winter - average speed 3.0 m/s

Autumn - average speed 2.6 m/s

Spring - average speed 3.0 m/s

Figure 4 Seasonal wind roses - Landfill Site (CALMET)

3.2 Pattern of atmospheric stability

Atmospheric stability substantially affects the capacity of a pollutant such as gas, particulate matter or odour to disperse into the surrounding atmosphere upon discharge and is a measure of the amount of turbulent energy in the atmosphere. For a landfill, odour emissions will have greatest impact downwind during stable conditions, reducing to a minimum impact during unstable conditions.

There are six Pasquill–Gifford classes (A-F) used to describe atmospheric stability and these classes are grouped into three stability categories; stable (classes E-F), neutral (class D), and unstable (classes A-C). The climate parameters of wind speed, cloud cover and solar insolation are used to define the stability category as shown in Table 3, and as these parameters vary diurnally, there is a corresponding variation in the occurrence of each stability category. Stability is most readily displayed by means of stability rose plots, giving the frequency of winds from different directions for various stability classes A to F.

Table 3Stability Category Relationship to Wind Speed, and Stability
Characteristics

Stability Category	Wind Speed Range (m/s) ^a	Stability Characteristics		
А	0-2.8	Extremely unstable atmospheric conditions, occurring near the middle of day, with very light winds, no significant cloud		
В	2.9 - 4.8	Moderately unstable atmospheric conditions occurring during mid- morning/mid-afternoon with light winds or very light winds with significant cloud		
С	4.9 - 5.9	Slightly unstable atmospheric conditions occurring during early morning/late afternoon with moderate winds or lighter winds with significant cloud		
D	≥6	Neutral atmospheric conditions. Occur during the day or night with stronger winds. Or during periods of total cloud cover, or during the twilight period		
E	3.4 – 5.4 ^b	Slightly stable atmospheric conditions occurring during the night-time with significant cloud and/or moderate winds		
F	0-3.3 ^b	Moderately stable atmospheric conditions occurring during the night-time with no significant cloud and light winds		
a. Data sourced from the Turner's Key to the P-G stability Categories, assuming a Net Radiation Index of +4 for daytime conditions (between 10:00 am and 6:00 pm) and -2 for night-time conditions (between 6:00 pm and 10:00 am)				

b. Assumed to only occur at night, during Net Radiation Index categories of -2.

Figure 5 shows the frequency of stability class for all hours from the model-generated dataset. The following trends were observed from Figure 5:

- Unstable atmospheres (A, B and C class stabilities) occur about 34.1 per cent of the time
- Stable E and F atmospheric conditions are predicted to be the most frequent at the site, with stability class F contributing to over 45.6 per cent of all conditions. The slightly stable atmosphere (E class) occurs for 9.1 per cent of the year, mostly occurring as a transition from neutral D class conditions to stable F class conditions

Figure 5 shows that the majority of stable winds (annually) are from the south, along with south-southwest and south-southeast.

The directional incidence of poor dispersion is focussed to the north, north-northwest and south (including southwest and southeast) and therefore, the zone of odour impact will be extended in these directions.

Figure 5 Annual stability rose for the Landfill Site (CALMET)

4. Environmental Guidelines

4.1 Air quality criteria

In Victoria and under the Environment Protection Act 1970, emissions from existing, new or proposed stationary emission sources are regulated by provisions in the State Environment Protection Policy (Air Quality Management) (SEPP-AQM) (Victorian Government, 2001). The EPA Victoria (EPA) criterion for a scheduled premises source requires that the predicted maximum ground level concentration (GLC) must not exceed the design criterion for the relevant pollutant listed in Schedule A of the SEPP-AQM. The predicted maximum concentration is taken to be the 99.9th percentile concentration using an averaging time of one hour or less, as appropriate.

The predicted peak GLC for each identified pollutant is assessed by dispersion modelling. Schedule A of the SEPP-AQM lists odour as an unclassified indicator for amenity and sets the following design criteria (refer to Table 4). Odour from the landfill facility is a potential critical indicator.

Indicator	Exceedance %	Averaging Period	Design Criterion	Location
General Odour	99.9 percentile	3 minute	1 odour unit	
Odour (industries involving intensive animal husbandry and sited in an area of low density of sensitive land uses)	99.9 percentile	3 minute	5 odour units	At site boundary

Table 4 Design criterion for gaseous boiler emissions

Whilst a landfill does not fall under the classification 'industries involving intensive animal husbandry', EPA Victoria have in the past accepted five odour units as the criterion at the site boundary for landfill facilities, and as such this value has been adopted for the report assessment. The site location does meet the criterion of a low density of sensitive land uses in the vicinity as shown in Figure 1.

4.2 Victorian Buffer Guidelines

Buffer distances have been used in Victoria since 1977 as a simple planning device to provide separation between industries with potential for odorous (or dusty) emissions and sensitive land uses.

A sensitive land use is defined as "any land uses which require a particular focus on protecting the beneficial uses of the air environment relating to human health and wellbeing, local amenity and aesthetic enjoyment, for example residential premises, child care centres, pre-schools, primary schools, education centres or informal outdoor recreation sites". In Victoria, the EPA publish recommended separation distance guidelines (EPA Publication 1518), where it is understood that the separation is set to minimise offsite impact on sensitive land uses arising from unintended, industry generated odour and dust emissions. That is, an external buffer is not to be used to prevent off-site impacts under routine operations. Equipment failure, accidents and abnormal weather conditions are recognised as some of the causes that may result in increased odour and dust emissions. EPA Publication 1518 notes that the terms 'buffer' and 'separation distance' have been used interchangeably, however the guideline adopts the term 'separation distance' to mean the space between industrial land uses and sensitive land uses.

The buffers are to be scribed as per EPA Guidelines Method 1 (Rural Method). This method requires that the separation distance be measured from the activity boundary of the industry to the activity boundary of the sensitive land use, i.e. this activity boundary of the industry is a convex polygon containing the activities of the industry.

The guidelines also enlarge the definition of 'sensitive land use' to include 'informal outdoor recreation sites'. This term is not itself defined within EPA Publication 1518, however enquiries to EPA⁴ have led to the definition adopted in Victorian Planning Schemes where under *Definitions, Clause 74*, informal outdoor recreation is defined as:

Land open to the public and used by non-paying persons for leisure or recreation, such as a cycle track, picnic or barbecue area, playground, and walking or jogging track.

EPA Publication 1518 includes landfills under 'Waste Management', and refers to EPA Publication 788.1, *Best Practice Environmental Management - Siting, Design, Operation and Rehabilitation of Landfills* (the Landfill BPEM).

The Landfill BPEM states that "appropriate buffer distances must be maintained between the landfill and sensitive land uses (receptors) to protect those receptors from any impacts resulting from a failure of landfill design or management or abnormal weather conditions. These failures might constitute discharge from the site of potentially explosive landfill gas, offensive odours, noise, litter and dust. Features that could be adversely affected by landfilling operations include surface waters, buildings and structures and airports. Buffer areas are not an alternative to providing appropriate management practices, but provide for contingencies that may arise with typical management practices".

Section 4 of the Landfill BPEM classifies landfills by the waste streams accepted into two types:

- Type 2, including:
 - Putrescible (municipal) waste, solid inert waste and fill material
 - Category C prescribed industrial waste
- **Type 3** comprising solid inert waste and fill material.

The required buffer distances are specified based upon landfill type and these are summarised in Table 5.

⁴ EPA Pers. comm. J. Frayne

Landfill Type	Required Buffer Distances
Туре 2	100 m from surface waters
	500 m from building or structures
	1500 m from aerodrome for piston propeller-driven aircraft
	3000 m from an aerodrome for jet aircraft
Туре 3	100 m from surface waters
	200 m from building or structures
	1500 m from aerodrome for piston propeller-driven aircraft
	3000 m from an aerodrome for jet aircraft

Table 5 Required buffer distances specified by the Landfill BPEM

4.2.1 **Application to Castlemaine Landfill**

The current landfill is classified as Type 2, thus a buffer distance of 500 m from buildings or structures apply. At the Castlemaine facility, this default buffer was subsequently recommended to be replaced by a 200 m separation distance based on the outcomes of a qualitative assessment in 2009⁵ and the recommendations from a Section 53V Environmental Audit in 2012⁶ The 500 m and 200 m buffer around the existing landfill are plotted in Figure 6.

⁵ Meinhardt Report for Mount Alexander Shire Council, Castlemaine Existing and Former Landfills – Qualitative Risk

Assessment, October 2009 ⁶ Nolan Consulting Report for Mount Alexander Shire Council, Section 53 Environmental Audit of development encroaching on Castlemaine Landfill buffer, December 2012

G:\31\33897\GIS\Maps\Working

G/31/33897/GIS/Maps/Working © 2008, While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN(S), make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN(S) cannol accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurata, incomplete or unsultable in any way and for any reason.

4.2.2 Variation to default buffer

The 500 m buffer recommended by EPA is the default buffer for putrescible landfills and has been set based on the experience of EPA field staff when landfill odour complaints are made at a given site. The factors to consider when considering a variation to the default value are: (i) the throughput of the landfill, and (ii) the local meteorology at the landfill site. Given the throughput at the Castlemaine facility is significantly lower than the Melbourne metropolitan landfills (viz. 3,000 tpa compared to 100,000 to 300,000 tpa) then the default buffer can be reduced. Where the local meteorology gives directions of poor dispersion towards existing or proposed residential developments then the buffer may need to be extended. In contrast, in the direction of good dispersion, the buffer may be able to be reduced. The influence of meteorology will be taken into account via the site specific modelling to obtain the process specific buffer.

Derating of 500 m buffer to account for throughput

Drawing on the Waste Management Association of Australia *National landfill Survey* (WMAA 2007), Australia has at least 459 landfills of sufficient capacity to be licensed to receive waste. Three landfill categories are identified namely small, medium and large as shown in Table 6.

Table 6 Landfill Size-Classes¹

Category	Annual Tonnage Received
Small	Less than 10,000 tonnes/year (not including open, unattended, or unlicensed tips)
Medium	Greater than 10,000 tonnes/year and less than 100,000 tonnes/year
Large	Greater than 100,000 tonnes/year

¹ Source: WMAA National Landfill Survey (WMAA 2007)

Table 7 gives the annual throughput for a number of landfills. From Table 7, it can be see that the Castlemaine Landfill is a small example compared with other facilities around Victoria and metropolitan Melbourne.

Table 7 Classification of landfills on throughput¹

Landfill	Throughput tonnes/yr
Castlemaine	3,000
Lakes Entrance	8,000
Bairnsdale	16,000
Hume	30,000
Ballarat	60,000
Wyndham	400,000

¹ http://www.audit.vic.gov.au/publications/20140903-Landfills/20140903-Landfills.html

The annual throughput of the Castlemaine Landfill is 3,000 tonne. Hence, given that the 500 m buffer is to provide amenity protection for large landfills, there is scope to allow for a reduction in buffer distance. Such a graded scale for buffer distance that is proportional to throughput is commonly done (e.g. Victorian Broiler Code, EPA Composting Guidelines).

As shown in Table 7, the size of landfills in Victoria can range from large metropolitan facilities with throughputs in excess of 100,000 tpa, down to much smaller rural with throughputs at 1500 tpa.

GHD has developed a method⁷ to derate buffers to account for reduced scale of operations. A similar method is used in the current guideline to define buffer distances for wastewater treatment ponds as a function of equivalent population (refer to Table 6).

The aim of derating the buffer is to provide an equivalent degree of protection in the event of a process upset/malfunction – independent of the facility size. Small landfill operations will generate correspondingly smaller odour/dust emissions during an upset, therefore a smaller buffer is required to deliver the same degree of protection from disamenity. A smaller buffer avoids unnecessary sequestering of land from sensitive land uses were the standard default buffer to be applied.

In this case, Castlemaine Landfill is a small example of a landfill – 3,000 tpa, and the 500 m buffer should be de-rated in comparison to the larger examples in metropolitan Melbourne at greater than 100,000 tpa.

From Table 6, a large landfill can considered to be above 1000,000 tpa (e.g. large metropolitan sites such as Wyndham and Boroondara) while a small landfill can be considered to have a throughput of approximately 1500 tpa. Then using the de-rating method⁷, the derating factor is calculated by the approximate square root of the capacity ratio. For the Castlemaine Landfill, the derated buffer is calculated as follows:

Derating factor:

$$\left[\frac{3,000}{100,000}\right]^{0.54} = 0.15$$

Therefore, applying the derating factor to the 500 m buffer gives a reduced buffer of:

0.15 x 500 = 75 m

The 75 m buffer is shown in Figure 7 and shows that this buffer is significantly smaller than the 500 m and 200 m buffer respectively, with only nominal excursions outside the site boundary (20 m to 40 m) and no encroachment onto any current or future residential locations.

Process-Specific Buffer

Separation distances are designed to minimise odour impact in the event of a process or operational upset, and the extent of the impact can therefore only be modelled for defined plausible upset scenarios. GHD has identified several such scenarios for this landfill and has modelled the consequent odour impact. The results were passed through an odour environmental risk assessment (OERA) to calculate the separation distance needed to obtain low risk at the buffer envelope (refer to section 7).

⁷ Clarey P, Pollock T "Integrating Separation Distances with Dispersion Modelling" Enviro 04, 28 March – 1 April 2004, Darling Harbor, Sydney.

G/31/33897/GIS/Maps/Working © 2008, While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN(S), make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN(S) cannol accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurata. Incomplete or unsuitable in any way and for any reason.

Google Earth Imagery 2016. Created by: M.A

5. Emission inventory

5.1 Landfill odour emission rates

Correspondence with EPA has indicated that they prefer onsite odour measurements to be collected at the Castlemaine site.

The direct methods of OER measurement for extended sources (such as use of flow-through hoods and isolation flux chambers) cannot readily be used to characterise odour emissions from a landfill tipping face as: (i) the operation of delivering loads to the tipping face by trucks and the moving of waste by swamp dozer would have to cease; and (ii) the emitting surface is highly heterogeneous and is very uneven, making the placement and sealing of hoods or chambers difficult. The indirect method of measuring the downwind plume odour levels along a transect at short range was adopted instead⁸. This method requires concurrent sampling at each station on the transect, and requires the atmospheric conditions (wind speed and atmospheric stability category) at the time of sampling to be measured/calculated. This method also requires dispersion modelling to be used to back-calculate the tipping face SOER.

While this method is clearly more cumbersome, it has the advantage of avoiding sub-sampling (i.e. the full plume width is sampled) and it represents source odour emissions from all of the component normal operations on the tip face.

5.1.1 Source emission rate testing

GHD has obtained OER data from the Castlemaine Landfill to obtain site-specific source OERs applicable for current landfill operations. Odour testing was conducted by Ektimo on 7 April 2016. The testing involved sampling ambient odour levels along a transect of the odour plume downwind from the active tipping face, and taking concurrent measurement of local wind speed and direction. The odour levels in the samples from the transect stations were analysed by Ektimo in their Ringwood olfactometry facility. The methodology to calculate the SOER from the active tipping face was to match the measured downwind odour plume lateral profile by back-calculation, using a dispersion model with an initial estimate of the SOER. Successive iterations were made with adjusted values of SOER until the match of predicted to measured lateral odour profile was optimised. Transect measurements were made at three times during the day, so that the diurnal variation in OER could be characterised.

This method was used recently by GHD at the Werribee Landfill as part of the Wyndham Vale Buffer Study. An environmental audit under Section 53V of the Environment Protection Act 1970 was subsequently conducted of that work. The audit findings were accepted by EPA as appropriate to develop buffer/separation distances around the existing and proposed quarry, landfill and organic waste treatment sites in the Wyndham Vale and Werribee West areas.

Modelling of the current landfilling scenario was performed using the approved dispersion model, CALPUFF. The predicted offsite odour impact is presented as contours of 99.9th percentile odour levels.

⁸ M. Asimakis and T. Pollock, Review of odour emission rate measurements on active tipping face of landfills, CASANZ Conference 20 September 2015

5.1.2 Landfill tipping face

Test Schedule

Three separate tests were conducted on 7 April 2016 during the morning (11 am), at midday (~1 pm) and the afternoon (~3 pm). The chosen times corresponded with:

- 1. 11 am just after all waste for the day placed on tipping face
- 2. ~1 pm two hours after all waste been placed
- 3. ~3 pm tipping face, just after covering

The tipping face on 7 April 2016 was located within Cell 4. The Ektimo report in Appendix A and Appendix B shows the positions of the tipping face. Figure 8 displays some of the photos taken during the site visits over the day.

The test day was chosen by GHD for the occurrence of light wind conditions during the tests. Under these conditions, the downwind odour levels are at a maximum and the odour plume 'signal' is better defined.

Note that this monitoring was conducted during the cooler months when the temperature dependent OERs are lowest. However, it is generally the cooler months that lead to the highest off-site odour impact, despite the lowered OER, as these are the times of greatest incidence of poor dispersion and are therefore most likely to govern the maximum (99.9th percentile) predicted odour levels.

A description of the odour monitoring of the landfill tipping face is given below.

Sampling Programme

Sampling of the downwind plume was conducted at four stations along a transect at short (~5-10 m) range from the downwind limit of the tipping face and parallel to the lee edge of the tipping face. In addition, an upwind station was used to measure background ambient odour levels directly upwind of the tipping face.

The placing of the transect lines and the sample positions was dependent on the wind direction at the time and the four locations were evenly spaced at a measured distance across the length of the tipping face. The locations were chosen so as not to interfere with operations at the tipping face.

The sampling in each test was conducted synchronously at all four stations downwind and at the one station upwind. The duration of sample collection was eight minutes and each sample drum was set at a height of 1.5 m above the ground. Local wind speed was measured using a portable weather station mounted on a 1.5 m mast within the clean fill depot at the top of Cell 4 and data was logged at ten minute intervals.

Looking south over Cell 4 (covered tipping face before placement of waste)

First load of waste ~10 am

Second load of waste ~10.15 am

Third load of waste ~10.45 am

Tipping face size (17 x 7.5 m) and transect set up for Test 1 at 11 am

Transect set up for Test 2 at ~1 pm

Figure 8 Photos of Castlemaine Landfill 7 April 2016

Further details of the sample measurements are given in the Ektimo report in Appendix A. Appendix B summarises the results of the back-calculation procedure.

The measured odour levels in Table 8 show that the downwind stations return values clearly above the upwind stations – i.e. the odour plume can be clearly distinguished against the background ambient odour levels. The morning surveys show an increase in plume odour levels compared to that measured in the afternoon – reflecting the effect of the waste being mixed and dumped, stirring up odour and settling down by the afternoon.

Table 8 Odour Emission Rate Survey - 7 April 2016

	Time (hr)	Temp ⁰C	Atmospheric Conditions		Measured Odour Concentration (OU)		
Source			Speed m/s ^(a)	Direction (degrees)	Stability ^(b)	Average Concentration Downwind	Average Concentration Upwind
Open Tipping Face	1100	14.4	1.1	254	А	56	16
Open Tipping Face	1250	16.1	1.1	280	В	44	16
Covered Tipping Face	1450	17.8	0.5	207	В	24	16

a. Measured on transect at 1.5 m height above ground.

b. Pasquill- Gifford Classification.

The measurements of odour level upwind and downwind of the tipping face were then used in a back-calculation procedure as described in Appendix B. The back-calculation of SOER (specific odour emission rate, or OER/m²) for the municipal tipping face gave a morning value of 60 OUm/s, midday value of 29 OUm/s (both values after completion of waste dumping) and an afternoon value 6.0 OUm/s for when the tipping face had been covered.

Tipping face Source Odour Emission Rate

Table 9 gives the tipping face SOERs at the landfill based on the site specific measurements for the current operations. The SOERs have been measured for the current tipping rate of 3,000 tonnes per annum with an average tipping face size of 128 m^2 (corresponding to a tipping face of size 17 m by 7.5 m).

Currently, the landfill receives waste from 9.30 am until 1.30 pm. Outside these hours, the active face is covered with a 150 mm layer of soil/compost, substantially reducing emissions to air.

A linear time variation in SOER was assumed between each pair of measurements. Outside the measurement times (but within tip operating times) the sources were assumed to 'plateau' at the same value as the nearest measurement.

Outside tip operating hours (i.e. 1.30 pm to 9.30 am) the sources are covered with soil and a nominal SOER equal to 10% of the peak measured value was adopted, based on the measurement of the tipping face once the covered material was placed.

Note that seasonal variation in the landfill tipping face SOER has not been accounted for, as odour sampling has been conducted during the autumn time only.

The OER data given in Table 9 for the current landfilling scenario has been calculated from data collected at the time of measurements.

	SOER OUm/s		
Time, hr	Castlemaine, Current (3,000 tpa)		
1	6		
2	6		
3	6		
4	6		
5	6		
6	6		
7	6		
8	6		
9	6		
10	60		
11	60		
12	29		
13	29		
14	6		
15	6		
16	6		
17	6		
18	6		
19	6		
20	6		
21	6		
22	6		
23	6		
24	6		

Table 9 SOER Data for Municipal Tipping Face

5.1.3 Landfill leachate pond

On 7 April 2016, sampling of the leachate pond system was also conducted using an Isolation Flux Chamber (IFC).

The leachate pond system consists of a single pond. The pond was partially filled and is used to collect the discharged leachate. Refer to Figure 8 for photos of the pond.

A single odour sample from an IFC was collected off the pond bank at the pump inlet point. A leachate pond SOER of 0.07 OUm/s was calculated from the IFC measurements. This SOER was applied to the emitting surface areas of the pond, which was calculated as 1,540 m² from the aerial imagery.

5.1.4 Greenwaste pile odour emission rate

The back-calculation procedure used to calculate the specific odour emission rate (SOER) of the landfill tipping face and for the green waste pile, with the key difference being that a single downwind odour sample was taken at the estimated centre of the odour plume.

The dimensions and orientation of the greenwaste pile were taken from current site maps, as well as site measurements taken during the sampling programme.

The greenwaste pile was defined based on GPS measurements of its corners during the day. On 7 April 2016, the greenwaste was approximated by a rectangle area of 22 m x 13 m. The odour samples were taken on a downwind single point at right angles to the wind direction.

Source	Time (Hr)	Temp ⁰C	Atmospheric Conditions			Measured Odour Concentration (OU)	
			Speed m/s ^(a)	Direction (degrees)	Stability ^(b)	Average Concentration Downwind	Average Concentration Upwind
Tipping Face	1350	17	0.7	231	В	19	16

Table 10 SOER Data for Greenwaste Pile

The back-calculation of SOER (specific odour emission rate, or OER/m²) was calculated to be 3 OUm/s.

5.1.5 Summary of landfill source OERs

Table 11 compiles the component landfill source OERs for normal operations.

Source	Area, m ²	SOER, OUm/s	OER, OUm ³ /s	Percentage of Total
Tipping face	127.5	60	7650	78.4
GW stockpile	286	7	2002	20.5
Leachate Pond	1540	0.07	108	0.1
Total			9760	100

Table 11 Landfill Source Odour Emission rates

Table 11 shows that the dominant odour source is the tipping face at \sim 80% of the all source total OER, with the compost stockpile contributing \sim 20%. The leachate pond OER is negligible compared to the other two sources.

5.2 Upset scenarios

Two upset scenarios have been considered for the landfill operations:

- Daytime operations with a larger tipping face than normal (double the size)
- Leachate pond overloading resulting in anaerobic conditions

5.2.1 Larger tipping face

A larger tipping face is possible in the event additional waste be delivered on a particular day. A doubling of the current operational tipping face was assumed at 34 m x 15 m.

Anaerobic Leachate Pond

Given the size of the landfill (3,000 tpa) and the area of the leachate pond, GHD considers the likelihood of the large leachate pond turning anaerobic due to overloading to be unlikely, therefore this event could be discarded as a plausible upset. Hence, the modelling of this scenario was not conducted.

6. Dispersion modelling

Dispersion modelling was conducted to predict the maximum offsite ground level odour concentrations resulting from odour emissions for; (i) the current normal operations scenario and (ii) one plausible upset scenario. In each case, the modelling placed the position of the tipping face at the worst case location i.e. the tipping face was placed closest to current/future receptors (that is, placed in the southwest corner of Cell 4).

It should be noted that, due to the mobile nature of the tipping operations at the landfill over the life of the site, direct assessment against fixed locations (such as the site boundary) do not necessarily give an indication of potential impact at all points in time. The predicted odour impact has been assessed for the landfilling location that is closest to the proposed future residents; however, the pattern of impact should be considered as mobile and can move around the site along the progressive position of the active tipping face during the life of Cell 4. This should give an indication of the maximum potential odour impact associated with future landfill operations.

The modelling is presented as predicted peak 3-minute averaged 99.9th percentile ground level odour contours and these are compared to the EPA odour design criterion contour at the existing nearby residences.

Note the modelling was undertaken assuming the landfill is operating seven days per week. Operations are currently confined to Monday to Friday, so that the predictions made in this section are conservative (i.e. an over-estimate the off-site odour impact).

Modelling was undertaken for normal operations and for the upset scenario as discussed in section 5.2.

6.1 Model

The odour dispersion modelling was conducted using the US EPA regulatory Gaussian puff model CALPUFF Version 5.8. CALPUFF is a multi-layer, multi-species non-steady-state puff dispersion model, which can simulate the effects of time and space, varying meteorological conditions on pollutant transport, chemical transformation and plume depletion. CALPUFF is a Regulatory Guideline model recommended by the US EPA, NSW Office of Environment and Heritage (OEH) and others, for a wide variety of applications including long-range transport, and on a case-by-case basis, for near-field applications involving complex flows and non-steadystate situations, such as in coastal applications, calm wind dispersion, stagnation, fumigation, complex terrain and recirculation situations (e.g. land-sea breezes). The model is suitable for source-receptor distances ranging from fence-line applications (tens of metres) to several hundred kilometres.

6.2 Model configuration and parameter selection

The following settings were used in the simulations:

- Model: CALPUFF Version 5.8
- The receptor grid was 12 km x 12 km, with a 100 m grid resolution
- 13 nearby residences were identified as discrete receptors
- Source odour emission rates were used as presented in section 5
- Meteorology was taken from the CALMET 2012 synthesised dataset
- Averaging time of one hour

- All CALPUFF settings were consistent with the OEH (2011) recommendations, except for use of observations from the met station
- The odour emissions from the tipping face, leachate pond and greenwaste pile were modelled as area sources. Refer to Appendix D for source parameter details.

6.3 Predicted peak off-site odour impact – normal operations

The predicted off-site peak (99.9th percentile) odour levels (1 OU, 2 OU and 5 OU) for the current landfill operations with the tipping face located closest to the proposed future residential area (southwest corner of Cell 4) are shown in Figure 9. The pattern of impact is seen to extend furthest in the north and south – reflecting the directions of poor dispersion (light stable winds) from the north and south.

Figure 9 shows the 1 OU level contour extends beyond the site boundary in all directions. This excursion extends 230 m south onto the Township Zoned land however not extending to the current rural residents, 130 m north onto Industrial and Public Use Zones, 80 m west and 120 m east onto Township Zone. Compliance to the 1 OU criterion for these locations is a SEPP (AQM) objective, even though this level cannot generally be detected against background odour in ambient conditions.

The 2 OU is mostly contained within the site boundary except for a marginal extrusion to the northwest approximately 70 m and south approximately 50 m.

The 5 OU level is generally taken as the level at which odour can be clearly distinguished against background, and if offensive, may lead to nuisance and resultant complaint. This level of odour was predicted to be contained entirely within the site boundary. The predicted extent of the 5 OU contour is well clear of any of the identified isolated residences, particularly those located south and west of the site.

Implications for Site Buffer

Figure 9 shows that the 500 m default buffer is significantly larger than the 1, 2 and 5 OU contours, while the 200 m buffer is closer in size to the 1 OU, with the 5 OU well within it. Setting a buffer to encompass the 1 OU contour would not allow sensitive land uses to be developed west of the plant as proposed in the Diamond Gully Structure Plan. However, this would not be appropriate given that the 1 OU level cannot generally be detected against background in ambient conditions. Setting such a buffer for this size landfill unnecessarily quarantines land from residential use, as there is no disamenity to be protected.

Setting a buffer to encompass the 5 OU contour, the level at which odour can be clearly distinguished under routine operations, would result in no external buffer from the site and would not constrain land to be developed for sensitive land use. Buffers are designed to minimise disamenity in the event of a malfunction/process upset, so that the modelling of an upset event, rather than routine operations, is required. This modelling is described in section 6.4.

G:\31\33897\GIS\Maps\Working

G:\31\33897\GIS\Maps\Working © 2008. While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN(S), make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN(S) cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurata, incomplete or unsultable in any way and for any reason.

6.4 Upset scenario

Figure 10 shows the predicted offsite peak (99.9th percentile) odour levels (1 OU, 2 OU and 5 OU) for the upset scenario, with doubling the size of tipping face, located closest to the proposed future residential area (southwest corner of Cell 4).

Note that the modelling has assumed that the upset condition is present for a complete year, so that the subsequent pattern represents the absolute worst-case scenario. To utilise these results, the probability of the upset event coupled with the probability of poor dispersion in the direction of the sensitive land use must be considered.

Pattern of Impact

The pattern of impact is seen to extend furthest in the north and south, reflecting the directions of poor dispersion (light stable winds) from the north and south.

Figure 10 shows that the 1 OU level contour extends beyond the site boundary in all directions. This excursion extends 330 m south onto the Township Zoned land and includes approximately eight existing rural residents; 200 m north into Industrial and Public Use Zones; 250 m west and east into the Township Zone. The 2 OU level is fairly consistent in size with the 200 m buffer, while the 5 OU level is predicted to be within the site boundary. The predicted extent of the 5 OU contour is clear of any of the identified isolated residences, particularly those located south and west of the site.

Implications for Site Buffer

Figure 10 shows that the 500 m default buffer is larger than the 1, 2 and 5 OU contours, while the 200 m buffer is closer in size to the 2 OU contour, with the 5 OU contour within it. Setting a buffer to encompass the 1 OU contour would be excessive, given this level cannot generally be detected against background in ambient conditions.

Setting a buffer to encompass the 5 OU contour, the level at which odour can be clearly distinguished, under upset operations would result in no buffer constraint for the site and would allow land to be developed for sensitive land use around the landfill.

As noted earlier, the upset scenario modelling does not account for the risk of odour impact. The SEPP (AQM) allows a risk assessment to be conducted in the event that design criteria can't be met and therefore assess the consequences of non-compliance. This is presented in section 7.

G:\31\33897\GIS\Maps\Working

8/180 Lonsdale St Melbourne VIC 3000 Australiar 61 3 8687 8000 F 61 3 8687 8111 E melmail@ghd.com.au W www.ghd.com.au © 2008. While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN(S), make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN(S) cannol accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurata, incomplete or unsultable in any way and for any reason.

6.5 Predicted exposure at nearby residences – routine & upset conditions

Table 12 shows the predicted odour levels for the landfill (under routine and upset scenarios). Refer to Figure 1 for receptor locations.

Table 12 and Figure 2 show that receptor R1 is most exposed at 1.5 OU, followed by R6 and R5 at 1.3 OU and 1.1 OU respectively, while the least exposed receptors are R2 and R3 for routine operations.

It is clear that none of the receptors identified are predicted to exceed the EPA criterion of 5 OU for either scenario.

Receptor	Odour impact, OU, 99.9 percentile, 3 min average Normal Operations	Odour impact, OU, 99.9 percentile, 3 min average Upset Scenario
R1	1.5	2.0
R2	0.4	0.6
R3	0.3	0.6
R4	0.5	0.9
R5	1.1	1.8
R6	1.3	2.2
R7	0.5	0.7
R8	0.9	1.5
R9	0.9	1.4
R10	0.7	1.1
R11	0.7	1.1
R12	0.7	1.1
R13	0.6	0.9

Table 12Predicted peak (99th percentile, short term averaged) odour impact
at nearby receptors

7. Odour environmental risk assessment

7.1 Background

The SEPP (AQM) specifies design criteria for individual pollutants, where the design criterion is the concentration that is not to be exceeded in ambient air. In the case of odour, which is commonly a blend of odorous constituents rather than a single odorant, EPA specify criteria depending on the circumstance of release. Odour emissions from new licensed discharge points at a premises must be limited, so that the odour level in the downwind plumes at ground level does not exceed 1 OU at and beyond the premises boundary. This criterion can be exceeded onsite.

Odour emissions from existing premises must be managed, so that there are no offensive odours at residences or public open spaces adjacent to residences.

The SEPP (AQM) allows a risk assessment to be conducted in the event that design criteria can't be met, to assess the consequences of non-compliance. Where the emission is of a substance with a design criterion is based on health effects, the risk assessment will take the form of a Health Risk Assessment (HRA). Where the emission is an unclassified substance such as odour or nuisance dust, where the criterion is based on amenity, the risk assessment is will take the form of an Environmental Risk Assessment (ERA).

7.2 Approach to ERA for odour impact

The recent EPA Broiler Farm OERA⁹ (Odour Environmental Risk Assessment) was issued as a discussion paper for comment. The paper presents a risk matrix to conduct an environmental risk assessment for broiler farms. In the absence of EPA guidance for environmental risk assessments for landfills and upon advice from the EPA, this Broiler Farm OERA has been applied by GHD to this assessment. The OERA risk matrix developed is presented as Table 13.

Frequency		Odour Concentration (OU CEN)			
Percentile	Occurrences (3 min av. time) per annum	15 +	10 -14	5 – 9	1 -4
99.9th	0 - 9	н	м	L	L
99.5th	10 - 44	н	н	м	L
98th	45 - 175	н	н	н	м
Outside 98th	>175	н	н	н	н

Table 13 Risk matrix in EPA broiler farm OERA

7.3 Risk descriptors

7.3.1 In the context of a broiler farm

The Broiler Code states that the OERA is not to describe an acceptable level of risk; rather this is up to the responsible authority (municipality). However, ERA formulations designed by GHD and VCAT in the past have used various risk weightings to assess the qualitative risk ranking into **high**, **medium**, **low** and in the case of GHD and VCAT¹⁰, **negligible**. EPA agreed that the implications of these rankings are as follows:

• Low – means the impact is acceptable and the farm can proceed

⁹ EPA Publication No. 1509 "Broiler Farm Odour Environmental Risk Assessment", November 2012
¹⁰ Victorian Civil and Administrative Tribunal (VCAT) in June 2011 (in relation to proceedings P1055/2010)

- **Medium** means that mitigation is required before the farm can proceed. Relocation of sheds on the site, reduction in farm size or use of stub stacks are the only potentially viable options open to the proponent
- **High** means that the site is unsuitable for the proposal

This understanding is also present in the Draft OERA.

7.3.2 In the context of a landfill

While Council and stakeholders should further consider the odour frequencies and the assignment of risk levels in the context of land uses that can be considered to be sensitive and non-sensitive, the risk descriptors for a landfill can be considered to be as follows:

- Where there is **low** risk of odour impact, then this land may be developed for sensitive land uses such as residential housing, schools and hospitals
- Where there is a **medium** or **high** risk of odour impact, then developments may be limited to 'non-sensitive' land uses

7.3.3 Scenarios assessed

The scenarios considered for the ERA are listed as follows:

- Normal Operations
- Upset Scenario with doubling of the area of the landfill tipping face

7.3.4 Assessment methodology

Further processing of the outputs of the odour dispersion modelling assessment has been carried out to prepare odour event "frequency contours" (as opposed to contours of predicted maximum odour concentration shown in the dispersion modelling assessment). These frequency contours show the predicted number of exceedences of a certain odour concentration.

The frequency contours have been used to assess the risk of odour impact from landfilling operations, with reference to the EPA risk matrix (refer to section 7.2). From this, contours of predicted risk have been developed showing the extent of medium risk of odour impact associated with each of the selected scenarios. This 'risk contour' also takes into account the mobile nature of landfill tipping operations, whereas the modelling assumed a fixed location of the tipping face, the risk contours apply to the envelope of potential impact for all potential future tipping locations.

Due to the mobile nature of the tipping operations at the landfill over the life of the site, direct assessment against fixed locations, such as the site boundary, do not necessarily give an indication of potential impact at all points in time. The predicted 'risk contours' have been plotted for the approved future cells (including Cell 4 and 6A and 6B); the pattern of impact should be considered as mobile, i.e. it can be moved around the site to give an indication of maximum potential odour impact associated with future landfill operations. Thus, the tipping face source has been transposed to all corners within the area covered by future approved cells.

7.4 Outcomes of ERA for odour impact

The outcomes of the ERA are shown in Figure 11 and Figure 12. It is important to note the following context and assumptions when viewing the risk contours:

- The ERA and resulting risk contours rely upon the input data and model configuration adopted for the dispersion modelling assessment, and as such are subject to the scope and limitations of that assessment. In particular, the risk contours are based on hourly meteorological data for a particular historical dataset and future meteorological conditions may vary from those measured historically.
- The risk contours are associated with predicted odour impact for routine operation of the landfill and a sensitivity analysis has been conducted for an enlarged tipping face only. It is possible that there will be a greater risk of odour impact in the event of other process upsets/malfunctions.
- The risk contours are based on odour emission rate data for the active tipping face and leachate ponds that was obtained from the landfill at a fixed point in time; this data does not take into account any seasonal variability in landfill odour emissions rates. The odour emission rates associated with landfill operation may vary over time, and be dependent on factors such as the moisture content of the wastes (affected by rainfall), temperature, aerial extent of cells that have not been completed with effective capping and gas extraction systems in place; presence and effectiveness of gas extraction systems installed during the intermediate stages of the landfill, leachate level within the landfill, and nature of the wastes.
- Modelling has been undertaken for seven days per week, where in reality the landfill only operates five days week, thus the predicted results are conservative compared with the actual impacts expected.

With reference to the risk contours shown in Figure 11 and Figure 12, land situated outside of the medium risk (yellow) contour is considered to have a low risk of odour impact and should be developed for a sensitive land use in an urban setting (i.e. high density residential). As defined by the adopted risk matrix, low risk corresponds to an odour concentration of less than or equal to 9 OU, occurring no more frequently than nine times within a 12 month period.

Land inside the medium risk (yellow) contour has a higher frequency of odour events than for land within the low risk area and is considered to have medium to high risk of odour impact if it were to be developed for a sensitive land use (e.g. urban land developed for residential use).

Hence, it is the outer limit of the medium risk contour (or the inner limit of the low risk contour) that defines the separation required for a low risk of odour exposure to the residents.

7.4.1 Implications for the site

Normal Operations

Based on the predicted frequency odour assessment, the extent of the medium risk contour (refer to Figure 11), reduces the required buffer to less than 200 m to the southwest in the direction of the nearest proposed residential area a part of the Diamond Gully Structure Plan.

The medium risk contour for the current operations extends to encompass two existing sensitive receptors, while the medium risk contour extends approximately 50 m into the proposed residential area from the southwest corner of the landfill boundary.

GHD understands that no verified odour complaints have been received by EPA or Council in relation to the Castlemaine Landfill due to the current operations, which supports the prediction of low risk at the majority of nearby receptors. The absence of complaints does not necessarily mean that nearby residents do not register odour from the landfill from time to time, but it does suggest that the offensiveness of the odour is not sufficient to lodge a complaint, or that the existing sensitive land uses are outside the zone of potential impact.

Upset Scenario

The extent of the medium risk contour with a tipping face double its normal size (refer to Figure 12), extends 150 m from the southwest corner of the landfill site boundary extending further in all directions, when compared to the medium risk contour for normal operations. This contour extends to encompass a greater amount of area to the southwest within the proposed residential area as part of the Diamond Gully Structure Plan. The sensitivity analysis has highlighted the requirement for Council to maintain an active tipping face size of approximately 10 x 10 m or less at all times.

The medium risk contour extends to encompass nine sensitive receptors, thus there would be a predicted increase in risk due to a larger tipping face. All other identified residences are predicted to remain at low risk.

Probability of Upset Occurring

The impact frequencies given in Table 13 are on the basis that the upset OER is occurring **all year**. In fact, such an event will be confined to infrequent and unpredictable occurrences. It is plausible to estimate an upper limit of five daily occurrences per year, so that the event frequencies given in the second column of Table 13 would reduce by the factor 365/5, or approximately **70 fold**. In other words, the risk reduces to **less than low** when the intermittency of the upset is taken into account.

The probability of the wind direction blowing in the direction of the proposed residential area within the DGSP is 7.8% of the time, so that the risk of this proposed residential area is further reduced to negligible, i.e. less than once in a lifetime occurrence.

G:\31\33897\GIS\Maps\Working © 2008. While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN(S), make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN(S) cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurata, incomplete or unsultable in any way and for any reason.

G:\31\33897\GIS\Maps\Working

G:\31\33897\GIS\Maps\Working © 2008. While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN(S), make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN(S) cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurata, incomplete or unsultable in any way and for any reason.

8. Conclusions and recommendations

8.1 Conclusions

The modelling results indicate that under normal and upset operations, the landfill would produce no offsite odour impact at the nearest and proposed sensitive receptors within the DGSP, with the 5 OU contour contained within the site boundary.

In this modelling, a number of conservative assumptions were made including modelling estimates being on for all days of the week as opposed to only Monday to Friday. Actual peak odour levels are expected to be lower than those presented.

The predicted odour impact was assessed for the future landfilling location that is closest to the future residents.

The results of the dispersion modelling assessment show that:

- The application of the Victoria EPA buffer guidelines results in a default buffer of 500 m.
- When the size of the Castlemaine Landfill is compared to larger examples of landfills, the default buffer can be de-rated to 75 m.
- The main odour source is the tipping face at is approximately 80% of the site emissions.
- Under normal (routine) and upset operations, the landfill would produce no off-site odour impact at the nearest sensitive receptors (residences) with the 5 OU contour contained within the site boundary.
- The extent of the predicted odour contours towards the north and south reflects the direction of the local cool air drainage flow as defined by the local katabatic drainage flows along Campbells Creek.
- Under normal (routine) and upset operations, a 200 m buffer (as a maximum) would be more than adequate to avoid sensitive land uses being exposed to potential odour impact from future landfill operations, given the 5 OU contour level is contained within the boundary.
- It can be argued that a buffer less than 200 m may be adequate based on the risk of odour impact as discussed in section 8.2.

In comparing the predicted odour levels with complaint history, GHD understands that no odour complaints were received by EPA in relation to the landfill and likewise, there had been no complaints made to Council. The absence of complaints is consistent with the predictions of odour levels during normal and upset operations.

8.2 Recommendation

It is noted that the design criteria for odour (1 OU beyond the site boundary) usually cannot be met for landfills and other classes of industry (e.g. composters, wastewater treatment plants and waste transfer stations) without recourse to an uneconomic size of premises. In these cases, an ERA can be performed to establish the risk of odour impact at the nearest sensitive receptors.

As the EPA guidelines for external buffers are intended to minimise odour impact in the event of a process upset/malfunction or extreme weather conditions to avoid unacceptable odour impact, the landfill should be designed and operated in accordance with best practice and higher risk operational conditions avoided to minimise the potential for process upset/malfunction, so that normal operations impact the frequency and magnitude of odour levels external to the landfill.

Therefore, GHD recommend that the appropriate site-specific buffer to apply to the Castlemaine landfill is that defined by the medium risk contour (in yellow) for the normal operations of the landfill, refer to Figure 13 below. This buffer avoids unnecessary sequestering of land from sensitive land uses were the default buffer to be applied.

G/31/33897/GIS/Maps/Working © 2008, While GHD has taken care to ensure the accuracy of this product, GHD and DATA CUSTODIAN(S), make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and DATA CUSTODIAN(S) cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurata. Incomplete or unsuitable in any way and for any reason.

Appendices

 $\textbf{GHD} \mid \textbf{Report for Mount Alexander Shire Council - Castlemaine Landfill, 31/33897}$

Appendix A – Ektimo report

Address (Head Office) 427 Canterbury Road, SURREY HILLS VIC 3127

Postal Address Unit 3, 4 Monash Gate, JANDAKOT WA 6164 Office Locations

Freecall: 1300 364 005 Int'l Call: +61 3 9813 7200 www.ektimo.com.au ABN: 86 600 381 413

Report Number R002635

Castlemaine Landfill GHD, Melbourne

This document is confidential and is prepared for the exclusive use of GHD and those granted permission by GHD.

Document Information

Client Name:	GHD
Report Number:	R002635
Date of Issue:	29 April 2016
Attention:	Michael Asimakis
Address:	L8, 180 Lonsdale Street Melbourne VIC 3000
Testing Laboratory:	Ektimo (ETC) ABN 74 474 273 172

Report Status

Format	Document Number	Report Date	Prepared By	Reviewed By (1)	Reviewed By (2)
Preliminary Report	-	-	-	-	-
Draft Report	-	-	-	-	-
Final Report	R002635	29/04/2016	ADo/TBu	TBu	
Amend Report	-	-	-	-	-

Template Version: 160330

Amendment Record

Document Number	Initiator	Report Date	Section	Reason
Nil	-	-	-	-

Report Authorisation

Terry Burkitt Director (Quality)

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Table of Contents

1	E	xecutive Summary	Ļ
2	F	Results 6	;
2	.1	Test 1: Active tipping face (1100 – 1108 hrs)6	;
2	.2	Test 2: Active tipping face (1252 – 1300 hrs)7	,
2	.3	Test 3: Active tipping face (1444 – 1452 hrs)	;
2	.4	Leachate pond)
2	.5	Green waste stock pile)
3	Т	est Methods	•
4	C	Quality Assurance/ Quality Control Information11	•
5	0	Definitions	

1 EXECUTIVE SUMMARY

Ektimo was engaged by GHD to perform odour monitoring at the Castlemaine Landfill located on Sluicers Road Castlemaine. Monitoring was conducted on 7 April 2016 in order to provide input data for a dispersion modelling assessment to be conducted by GHD.

Monitoring was performed as follows:

Location	Time Hrs	Status	Test Parameters	Methodology
Test 1: Active tipping face	1100	After receival of 3 truckloads of waste	Odour concentration	4 point downwind traverse Singleton upwind sample
Leachate pond	1205	Quiescent surface	Odour flux rate	Isolation flux chamber
Test 2: Active tipping face	1252	Repeat test	Odour concentration	4 point downwind traverse
Green waste stock pile	1350	Static pile	Odour concentration	Singleton downwind sample
Test 3: Active tipping face	1444	After covering waste with temporary cover	Odour concentration	4 point downwind traverse Singleton upwind sample

All results are reported on a wet basis at STP. Unless otherwise indicated, the methods cited in this report have been performed without deviation.

The site layout and locations of the odour sources sampled are shown below:

The active tipping face was located in the north east corner of the active cell. Tests 1 and 2 were conducted at the active tipping face after receival of three truckloads of general municipal waste. The approximate dimensions of the active tipping face are shown below:

Test 3 was conducted at the active tipping face immediately after the received material was compressed and covered with temporary cover (clean fill). The following photographs show the process part way to completion.

2 **RESULTS**

2.1 Test 1: Active tipping face (1100 – 1108 hrs) Tested 7 April 2016

Sample location	Distance from tipping face (m)	Sample ID	Dilution ratio	Odour concentration (ou)	Uncertainty 95% C.I. (ou)
Test 1 Point 1	5.0	60	All sample gas	36	20 - 64
Test 1 Point 2	5.0	65	All sample gas	71	39 - 130
Test 1 Point 3	4.5	121	All sample gas	77	43 - 140
Test 1 Point 4	4.5	64	All sample gas	39	22 - 70
Test 1 Upwind		21	All sample gas	NR	-

R002624	Butanol threshold (ppb)	Repeatability "r"	Repeatability "10r"	Accuracy "A"
Acceptance criteria	20-80	≤ 0.477	≤ 3.00	< 0.217
Current value	44	0.406	2.55	0.146

Sampling was conducted after the dumping of three truckloads of general municipal waste.

Downwind samples were collected simultaneously.

An upwind sample was collected to the west of the active tipping face at the same time as the downwind measurements. 260 ou was measured at this point. This was inconsistent with onsite observation and therefore disregarded and reported as a 'no result' (NR).

Odour samples were analysed on the same day as collection 1500 to 1700 hours.

2.2 Test 2: Active tipping face (1252 – 1300 hrs) Tested 7 April 2016

Sample location	Distance from tipping face (m)	Sample ID	Dilution ratio	Odour concentration (ou)	Uncertainty 95% C.I. (ou)
Test 2 Point 1	5.0	93	All sample gas	55	30 - 98
Test 2 Point 2	5.0	94	All sample gas	65	36 - 120
Tes 2 Point 3	5.0	136	All sample gas	30	17 - 54
Test 2 Point 4	5.0	28	All sample gas	27	15 - 49

R002624	Butanol threshold (ppb)	Repeatability "r"	Repeatability "10r"	Accuracy "A"
Acceptance criteria	20-80	≤ 0.477	≤ 3.00	< 0.217
Current value	44	0.406	2.55	0.146

Important note: <u>The formal detection limit of the olfactometer determined according to AS4323.3 is 34 ou.</u> <u>Accordingly reported results less than the formal detection limit are estimates only.</u>

Test 2 sampling was conducted repeat testing conducted after test 1.

Downwind samples were collected simultaneously.

Odour samples were analysed on the same day as collection 1500 to 1700 hours.

2.3 Test 3: Active tipping face (1444 – 1452 hrs) Tested 7 April 2016

Sample location	Distance from tipping face (m)	Sample ID	Dilution ratio	Odour concentration (ou)	Uncertainty 95% C.I. (ou)
R002635					
Test 3 Point 1	5.0	62	All sample gas	28	16 - 50
Test 3 Point 2	5.0	174	All sample gas	25	14 - 44
Test 3 Point 3	8.0	33	All sample gas	20	11 - 36
Test 3 Point 4	10.0	44	All sample gas	23	13 - 41
Test 3 Upwind	-	152	All sample gas	16	9.2 - 29

R002635	Butanol threshold (ppb)	Repeatability "r"	Repeatability "10r"	Accuracy "A"	
Acceptance criteria	20-80	≤ 0.477	≤ 3.00	< 0.217	
Current value	42	0.400	2.51	0.163	

Important note: <u>The formal detection limit of the olfactometer determined according to AS4323.3 is 34 ou.</u> <u>Accordingly reported results less than the formal detection limit are estimates only.</u>

Sampling was conducted immediately after the active tipping face had been covered with temporary cover.

Downwind samples were collected simultaneously.

An upwind sample was collected to the west of the active tipping face at the same time as the downwind measurements.

Odour samples were analysed on the same day as collection 1700 to 1830 hours.

2.4 Leachate pond (1205 – 1213) Tested 7 April 2016

R002635 1	Leachate Pond
Date tested	7/04/2016
Location Description	Western bank (northern end)
Surface Description	Light brown water free of floating material
Area Classification	Agricultural
Sampling Method	AS4323.4
Equilibration time, hrs	1140 - 1205
Sample ID	90
Dilution ratio	Nil
Sampling time, hrs	1205 - 1213
Odour concentration, ou	120
Odour flux rate, ou/m²/min	4.3
Sweep Rate, L/min	4.70
Penetration Depth, mm	20
Static Pressure, Pa	<2
Surface temperature (°C)	15
Chamber temperature (°C)	19
Ambient temperature (°C)	14

R002624	Butanol threshold (ppb)	Repeatability "r"	Repeatability "10r"	Accuracy "A"	
Acceptance criteria	20-80	≤ 0.477	≤ 3.00	< 0.217	
Current value	44	0.406	2.55	0.146	

Odour samples were analysed on the same day as collection 1500 to 1700 hours.

2.5 Green waste stock pile (1350 – 1358) Tested 7 April 2016

Sample location	Distance from stockpile (m)	Sample ID	Dilution ratio	Odour concentration (ou)	Uncertainty 95% C.I. (ou)
Green Waste Downwind	8.0	135	All sample gas	19	11 - 33

R002635	Butanol threshold (ppb)	Repeatability "r"	Repeatability "10r"	Accuracy "A"	
Acceptance criteria	20-80	≤ 0.477	≤ 3.00	< 0.217	
Current value	42	0.400	2.51	0.163	

Important note: <u>The formal detection limit of the olfactometer determined according to AS4323.3 is 34 ou.</u> <u>Accordingly reported results less than the formal detection limit are estimates only.</u>

Due to the variable nature of the wind direction during sampling, sample collection was conducted 'following the odour plume' in the area indicated by the yellow arrows on the photograph above.

Odour samples were analysed on the same day as collection 1700 to 1830 hours.

3 TEST METHODS

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request

Parameter	Sampling Method	Analysis Method	Method Uncertainty		NATA Ac	credited
			Detection Limit		Sampling	Analysis
Odour (leachate pond)	AS4323.4	AS4323.4	analyte	analyte	\checkmark	√
Odour (grab samples)	AS 4323.3	AS 4323.3	30ou	not specified	✓	✓

4 QUALITY ASSURANCE/ QUALITY CONTROL INFORMATION

Ektimo (EML) and Ektimo (ETC) are accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo (EML) and Ektimo (ETC) are accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025. – General Requirements for the Competence of Testing and Calibration Laboratories. ISO/IEC 17025 requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Compliance Manager.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

5 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

- STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
- Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter.
- VOC Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.
- TOC The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.
- OU The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).
- PM_{2.5} Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (μm).
- PM₁₀ Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (μm).
- BSP British standard pipe
- NT Not tested or results not required
- NA Not applicable
- D_{50} 'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie. half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.
- D Duct diameter or equivalent duct diameter for rectangular ducts
- < Less than
- > Greater than
- ≥ Greater than or equal to
- ~ Approximately
- CEM Continuous Emission Monitoring
- CEMS Continuous Emission Monitoring System
- DER WA Department of Environment & Regulation
- DECC Department of Environment & Climate Change (NSW)
- EPA Environment Protection Authority FTIR Fourier Transform Infra Red
- NATA National Association of Testing Authorities
- RATA Relative Accuracy Test Audit
- AS Australian Standard
- USEPA United States Environmental Protection Agency
- Vic EPA Victorian Environment Protection Authority
- ISC Intersociety committee, Methods of Air Sampling and Analysis
- ISO International Organisation for Standardisation
- APHA American public health association, Standard Methods for the Examination of Water and Waste Water
- CARB Californian Air Resources Board
- TM Test Method
- OM Other approved method
- CTM Conditional test method
- VDI Verein Deutscher Ingenieure (Association of German Engineers)
- NIOSH National Institute of Occupational Safety and Health
- XRD X-ray Diffractometry

Appendix B – Back- Calculation procedure – SOER of landfill tipping face and greenwaste pile

Introduction

The back calculation procedure used to calculate the specific odour emission rate (SOER) of the landfill tipping face involves selecting an SOER for the active tipping face to match the measured odour concentration in the downwind odour plume, with the concentration predicted by configuring an atmospheric dispersion model to simulate the conditions at the time of odour sampling. Sampling was conducted at three times through the cycle of active tipping and covering, on 7 April 2016.

B1.2 Back-Calculation Procedure

The back calculation procedure requires a list of hourly values of temperature, wind speed, wind direction, atmospheric stability (Pasquill-Gifford stability categories) and mixing depth.

Onsite meteorological observations concurrent with odour sampling events were formatted for input into the dispersion model.

Preliminary simulations were conducted with the site representative stability to represent the actual time of measurements – these being the estimated range of stability observed on the sampling day, which ranged from category A to category B.

The meteorological input data is summarised in Table B1.

Data	Source	Time	Temp °C	Atmospheric Conditions			
Date	Cource	Time	remp o	Speed m/s ^(b)	Direction (degrees)	Stability ^(a)	
7 April 2016	Active Tipping Face	1100	14.4	1.1	254	А	
	Active Tipping Face	1250	16.1	1.1	280	В	
	Covered Tipping Face	1450	17.8	0.5	207	В	

Table B1 Landfill Odour Emission Rate Survey - 7 April 2016

a. Pasquill – Gifford Classification (estimated by GHD meteorologist)

b. Measured on transect at 1.5 m height above ground.

Model Settings

The model allows a number of options to be specified to configure the model to the Castlemaine Landfill site. Key components of the model configuration are summarised below:

- Ground level concentrations were predicted at discrete receptors that were set-up in the same position as each odour sample station on the sampling transect
- The terrain option was not selected as it has no effect on the dispersion of ground-based emissions
- Pasquill-Gifford horizontal dispersion curves were used
- A roughness height of 0.2 m was selected
- The averaging time selected for each simulation corresponds to the duration of each odour sampling event (eight minutes)
- The initial vertical spread of emissions was set at 0.4 m, while the height of the tipping face was set at 1.5 m

B1.3 Source geometry

The dimensions and orientation of the municipal tipping face was based on current site maps, as well as site measurements taken during the sampling programme.

The municipal tipping face was defined on GPS measurements of the tipping face corners during the day. On 7 April 2016, the tipping face was approximated by a rectangle area of 7.5 m x 17 m (refer to Figures B2, B4 and B6).

B1.4 Odour measurements

The odour samples were taken on a downwind transect at right angles to the wind direction and at four sample stations, refer to the yellow stars in Figures B1 to B3. In addition, a single upwind sample was taken to be representative of the ambient background odour level.

The mean measured odour concentrations over the transect for each monitoring event, corrected for the background odour, are given in Table B2. Sampling methods and results are detailed in the ETC report included as Appendix A.

B1.5 Calculations

The equation used to calculate the SOER for each source was:

SOER_(source) = measured (OU_{tm}) / predicted (OU_{tm}) x SOER_(model)

The model predictions and corresponding measured odour concentrations used to back calculate the SOER for each source are presented in Table G2.

To verify the results of the back calculation procedure, the average back calculation SOER was used to remodel each of the initial simulations. The results of these simulations are presented as odour plots in Figures B1, B2 B3, B4, B5 and B6.

The measured upwind odour concentrations have been subtracted from the downwind mean measured odour concentrations over each transect. Where the measured upwind sample was less than the non-detect (ND) Olfactometer level of 30 OU i.e. as calculated in AS/NZS 4323.3, the actual reading was used. In three of these cases, the actual reading was also a "less than", and consistent with statistical practice, the 50% ND was subtracted.

Table B2 SOER back-calculation data

Time	Discrete Rec (MGA)	eptor Location	Odour Conc. (OU)				Average SOER (OU m/s)	
	Easting	Northing	Measured	Measured Average	Predicted	Predicted Average		
1100 Hr ¹	250558	5892763	28	48	10	48	60	
	250565	5892756	63		79			
	250570	5892750	69		87			
	250569	5892739	31		16			
1252 Hr ²	250567	5892756	47	36	18	36	29	
	250568	5892750	57		48			
	250570	5892744	22		57			
	250567	5892739	19		22			
1444 Hr ₃	250555	5892763	20	16	11	16	6	
	250560	5892762	17		23			
	250567	5892760	12		18			
	250570	5892754	15		10			

Notes to Table C2:

1. Upwind concentration 16 OU (measured during test 3 at 1444-1452)

2. Upwind concentration 16 OU (measured during test 3 at 1444-1452)

3. Upwind concentration 16 OU (measured during test 3 at 1444-1452)

Figure B2 Test 1 - 11 am Predicted Odour Concentration - 8 Minute Average

Figure B1 Test 1 – 11 am Odour Concentration - 8 Minute Average

Figure B3 Test 2 - 12.52 pm Odour Concentration - 8 Minute Average

B1.6 Greenwaste Back Calculation Procedure

The back-calculation procedure used to determine the specific odour emission rate (SOER) of the landfill tipping face was also conducted for the green waste pile with the key difference being only one downwind transect was recorded.

The meteorological input data is summarised in Table B3 for the greenwaste pile.

 Table B3
 Greenwaste Odour Emission Rate Survey - 7 April 2016

Date	Source	Timo	Tomp °C	Atmospheric Conditions			
		TIME	remp C	Speed m/s ^(b)	Direction (degrees)	Stability ^(a)	
7 April 2016	Greenwaste pile	1350	17	0.7	231	В	

Model Settings

The model allows a number of options to be specified to configure the model to the Castlemaine Landfill site. Key components of the model configuration are summarised below:

- Ground level concentrations were predicted at discrete receptors that were set-up in the same position as each odour sample station on the sampling transect
- The terrain option was not selected as it has no effect on the dispersion of ground-based emissions
- Pasquill-Gifford horizontal dispersion curves were used
- A roughness height of 0.2 m was selected
- The averaging time selected for each simulation corresponds to the duration of each odour sampling event (eight minutes)
- The initial vertical spread of emissions was set at 0.4 m, while the height of the greenwaste was set at 1.5 m

B1.3 Source geometry

The dimensions and orientation of the greenwaste was based on current site maps, as well as site measurements taken during the sampling programme.

The greenwaste was defined based on GPS measurements of the corners during the day. On 7 April 2016, the greenwaste was approximated by a rectangle area of 22 m x 13 m (refer to Figure B7).

Odour measurements

The odour samples were taken on a downwind single point at right angles to the wind direction (refer to the yellow star in Figure B7).

The measured odour concentration is given in Table B4.

G1.5 Calculations

The equation used to calculate the SOER for each source was:

SOER_(source) = measured (OU_{tm}) / predicted (OU_{tm}) x SOER_(model)

The model predictions and corresponding measured odour concentrations used to backcalculate the SOER for each source are presented in Table B4.

Table B4 Greenwaste SOER back-calculation data

Time	Discrete Re Location (M	ceptor GA)			Average SOER (OU m/s)		
	Easting	Northing	Measured	Measured Average	Predicted	Predicted Average	
1350 Hr ¹	250591	5892803	11	11	11	1 1	7

Notes to Table C2:

1. Upwind concentration 16 OU (measured during test 3 at 1444-1452)

Figure B7 Greenwaste Predicted Odour Concentration - 8 Minute Average

Appendix C – CALMET input file

CMM2.inp 3133897 Castlemaine Landfill, TAPM MET 2012, NoOBS MODE 60x60 @ 400m grid Kinematic effects and O'Brien Included 20/04/2016 MA TERRAD = 5 - Geo file mods based on aerial. Excel Input Test. ----- Run title (3 lines) -----CALMET MODEL CONTROL FILE -------_____ INPUT GROUP: 0 -- Input and Output File Names Subgroup (a) Default Name Type File Name ! GEODAT=L:\jobs\3133897\Calmet\geo\GEO.DAT! * SRFDAT=L:\jobs\3133897\Calmet\met\surf.dat * CLDDAT= GEO. DAT i nput SURF. DAT input CLOUD. DAT PRECI P. DAT input * PRCDAT= input * WTDAT= WT. DAT i nput ! METLST=L: \j obs\3133897\Calmet\CMM2.lst! ! METDAT=L: \j obs\3133897\Calmet\CMM2.dat! * PACDAT= * CALMET. LST CALMET. DAT output output PACOUT. DAT output All file names will be converted to lower case if LCFILES = T Otherwise, if LCFILES = F, file names will be converted to UPPER CASE T = lower case ! LCFILES = F ! F = UPPER CASE NUMBER OF UPPER AIR & OVERWATER STATIONS: Number of upper air stations (NUSTA) No default Number of overwater met stations ! NUSTA = 0!(NOWSTA) No default ! NOWSTA = 0!NUMBER OF PROGNOSTIC and IGF-CALMET FILES: Number of MM4/MM5/3D.DAT files (NM3D) No default ! NM3D = 1! Number of IGF-CALMET. DAT files (NIGF) No default ! NIGF = 0 ! ! END! Subgroup (b) Upper air files (one per station) Default Name Type File Name 1 * UPDAT=UP_X. DAT * File Name UP1. DAT UP1. DAT *END³ i nput i nput i nput *END* UP1. DAT *END* UP1. DAT i nput *END* UP1. DAT UP1. DAT *END* i nput *END* i nput UP1. DAT i nput i nput i nput *END* UP1. DAT UP1. DAT *END* *END* *END* UP1. DAT i nput *END* UP1. DAT i nput UP1. DAT *END* i nput Subgroup (c) Overwater station files (one per station) File Name Default Name Type 1 * SEADAT=SEA_449. DAT * *END* SEA1. DAT i nput -----Subgroup (d) MM4/MM5/3D.DAT files (consecutive or overlapping) Default Name Type File Name ! M3DDAT=L:\jobs\3133897\Calmet\met\CALTAPM\2012.m3d! !END! *M3DDAT=M3D_X.DAT * *END* *M3DDAT=M3D_X.DAT * *END* MM51. DAT i nput 1 i nput i nput i nput MM51. DAT MM51. DAT 1 1 *M3DDAT=M3D_X. DAT * MM51. DAT 1 *END* 1 1 1 1 MM51. DAT i nput *END* MM51. DAT i nput *END* *END* MM51. DAT i nput *END* MM51. DAT input Page 1

MM51. DAT MM51. DAT MM51. DAT	i nput i nput i nput	1 *M3DDA 1 *M3DDA 1 *M3DDA 1 *M3DDA	CMM2 T=M3D_X.DAT * T=M3D_X.DAT * T=M3D_X.DAT *	2. i np *E *E	ND* ND* ND*
Subgroup (o)			1 = MSD_X. DAT		
Defeult Neme				ig) 	
		FILE Name			
I GFn. DAT I GFn. DAT	i nput i nput	1 * I GFD. 1 * I GFD.	AT=CALMETO. DA AT=CALMETO. DA	Т * Т * Т * Т * Т * Т * Т * Т *	* END* * END*
Subgroup (f) Other file nam	 es 				
Default Name	Туре	File Name			
DI AG. DAT PROG. DAT	i nput i nput	* DI ADAT= * PRGDAT=		*	c c
TEST. PRT TEST. OUT TEST. KIN TEST. FRD TEST. SLP DCST. GRD	output output output output output output	* TSTPRT= * TSTOUT= * TSTKIN= * TSTFRD= * TSTSLP= * DCSTGD=		* * * * *	
(3) Sub num an	groups (b) ber of fil 'END' (sur	through (es (NUSTA, round by de !END!	NOWSTA, NM3E NOWSTA, NM3E elimiters) at	led ONL), NI GF : the e	Y if the corresponding) is not 0, and each must have end of EACH LINE
I NPUT GROUP: 1	Genera	l run conti	rol parameter	S	
Starti ng	date: Ye Mon Di Ho	ar (IBYR) th (IBMO) ay (IBDY) ur (IBHR)	No default No default No default No default		! BYR= 2012 ! ! BMO= 1 ! ! BDY= 1 ! ! BHR= 1 !
Note: IBH (IB	R is the t HR=1, the	ime at the first hour	END of the f of a day, ru	irst h Ins fro	nour of the simulation om 00:00 to 01:00)
Base time PST = CST =	zone 08, MST = 06, EST =	(IBTZ) 07 05	No default		! IBTZ=-10 !
Length of	run (hour	s) (IRLG)	No default		! RLG= 8784 !
Run type		(IRTYPE)	Default: 1		! I RTYPE= 1 !
0 = Co 1 = Co (u (IRTYP	mputes win mputes win *, w*, L, E must be	d fields on d fields an zi, etc.) 1 to run Ca	nly nd micrometec ALPUFF or CAL	orol ogi .GRI D)	cal vari abl es
Compute s by CALGRI component in additi fields ? (LCALGRD	pecial dat. D (i.e., 3 s and temp onal to re (LCALGRD) must be T	a fields ro -D fields o erature) gular to run CALO	equired of W wind Defaul GRID)	t: T	! LCALGRD = T !
Flag to SETUP ph (Used to of the m	stop run a ase (ITEST allow che odel input	fter) cking s, files, (Default: etc.) Pag	2 ge 2	! I TEST= 2 !

CMM2. inp ITEST = 1 - STOPS program after SETUP phase ITEST = 2 - Continues with execution of COMPUTATIONAL phase after SETUP Test options specified to see if they conform to regulatory values? (MREG) No Default ! MREG = 0 !0 = NO checks are made 1 = Technical options must conform to USEPA guidance IMIXH -1 Maul-Carson convective mixing height over Land; OCD mixing height overwater I COARE 0 OCD del taT method for overwater fluxes THRESHL 0.0 Threshold buoyancy flux over Land needed to sustain convective mixing height growth ! END! _____ INPUT GROUP: 2 -- Map Projection and Grid control parameters Projection for all (X, Y): Map projection (PMAP) Default: UTM ! PMAP = UTM ! Universal Transverse Mercator Tangential Transverse Mercator UTM TTM Lambert Conformal Conic Polar Stereographic Equatorial Mercator Lambert Azimuthal Equal Area LCC PS EM : LAZA : False Easting and Northing (km) at the projection origin (Used only if PMAP= TTM, LCC, or LAZA) (FEAST) Default=0.0 ! FEAST = 0.4 = 0.000 (FNORTH) ! FNORTH = 0.000 Defaul t=0.0 UTM zone (1 to 60) (Used only if PMAP=UTM) (IUTMZN) ! IUTMZN = 55No Default 1 Hemisphere for UTM projection? (Used only if PMAP=UTM) (UTMHEM) Default: N ! UTMHEM = S !Northern hemisphere projection Southern hemisphere projection Ν S Latitude and Longitude (decimal degrees) of projection origin (Used only if PMAP= TTM, LCC, PS, EM, or LAZA) (RLATO) No Default ! RLATO = ON ! (RLONO) No Default ! RLONO = OE ! RLONO identifies central (true N/S) meridian of projection RLATO selected for convenience RLONO identifies central (true N/S) meridian of projection RLATO selected for convenience RLONO identifies central (grid N/S) meridian of projection RLATO selected for convenience RLONO identifies central meridian of projection RLATO is REPLACED by 0.0N (Equator) RLONO identifies longitude of tangent-point of mapping plane RLATO identifies latitude of tangent-point of mapping plane TTM : LCC : PS ΕM LAZA: Matching parallel(s) of latitude (decimal degrees) for projection (Used only if PMAP= LCC or PS) (XLAT1) No Default ! XLAT1 = ON ! ! XLAT1 = ON ! ! XLAT2 = ON ! (XLAT2) No Default LCC : PS : Projection cone slices through Earth's surface at XLAT1 and XLAT2 Projection plane slices through Earth at XLAT1 (XLAT2 is not used) Latitudes and longitudes should be positive, and include a letter N,S,E, or W indicating north or south latitude, and east or west longitude. For example, 35.9 N Latitude = 35.9N 118.7 E Longitude = 118.7E Note: Datum-region

The Datum-Region for the coordinates is identified by a character string. Many mapping products currently available use the model of the Page 3 $\,$

CMM2.inp Earth known as the World Geodetic System 1984 (WGS-84). Other local models may be in use, and their selection in CALMET will make its output consistent with local mapping products. The list of Datum-Regions with official transformation parameters is provided by the National Imagery and Mapping Agency (NIMA). NIMA Datum - Regions(Examples) WGS-84 Reference Ellipsoid and Geoid, Global coverage (WGS84) NORTH AMERICAN 1927 Clarke 1866 Spheroid, MEAN FOR CONUS (NAD27) NORTH AMERICAN 1983 GRS 80 Spheroid, MEAN FOR CONUS (NAD83) NWS 6370KM Radius, Sphere ESRI REFERENCE 6371KM Radius, Sphere WGS-84 NAS-C NAR-C NWS-84 ESR-S Datum-region for output coordinates (DATUM) Default: WGS-84 ! DATUM = WGS-84 ! Horizontal grid definition: Rectangular grid defined for projection PMAP, with X the Easting and Y the Northing coordinate No. X grid cells (NX) No. Y grid cells (NY) No default ! NX = 60 i No default ! NY = 60 Grid spacing (DGRIDKM) No default ! DGRIDKM = 0.4 ! Units: km Reference grid coordinate of SOUTHWEST corner of grid cell (1,1) No default No default X coordinate (XORIGKM) Y coordinate (YORIGKM) ! XORIGKM = 238.610 ! ! YORIGKM = 5880.795 ! Units: km Vertical grid definition: No. of vertical layers (NZ) No default ! NZ = 11 ! Cell face heights in arbitrary vertical grid (ZFACE(NZ+1)) No defaults Uni ts: m ! ZFACE = 0., 20., 40., 60., 90., 120., 180., 250., 500., 1000., 2000., 3000. ! ! END! INPUT GROUP: 3 -- Output Options DISK OUTPUT OPTION Save met. fields in an unformatted output file ? (LSAVE) (F = Do not save, T = Save) Default: T ! LSAVE = T ! Type of unformatted output file: (IFORMO) Default: 1 ! | FORMO = 1 ! 1 = CALPUFF/CALGRID type file (CALMET.DAT) 2 = MESOPUFF-II type file (PACOUT.DAT) LINE PRINTER OUTPUT OPTIONS: Print met. fields ? (LPRINT) Dr (F = Do not print, T = Print) (NOTE: parameters below control which Default: F ! LPRINT = F ! met. variables are printed) Print interval (IPRINF) in hours (Meteorological fields are printed every 1 hours) Default: 1 ! | PRINF = 1 !Specify which layers of U, V wind component to print (IUVOUT(NZ)) -- NOTE: NZ values must be entered (0=Do not print, 1=Print) (used only if LPRINT=T) Defaults: NZ*0 ! IUVOUT = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 !

CMM2. inp Specify which levels of the W wind component to print (NOTE: W defined at TOP cell face -- 11 values) (IWOUT(NZ)) -- NOTE: NZ values must be entered (0=Do not print, 1=Print) (used only if LPRINT=T & LCALGRD=T) Defaults: NZ*0 ! IWOUT = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ! Specify which levels of the 3-D temperature field to print (ITOUT(NZ)) -- NOTE: NZ values must be entered (0=Do not print, 1=Print) (used only if LPRINT=T & LCALGRD=T) ------Specify which meteorological fields to print (used only if LPRINT=T) Defaults: 0 (all variables) Vari abl e Print ? (0 = do not print, 1 = print) _____ -----PGT stability class
Friction velocity
Monin-Obukhov length
Mixing height
Convective velocity scale
Precipitation rate
Sensible heat flux
Convective mixing het STABI LI TY USTAR = 0 MONT N = 0 MI XHT = WSTAR 0 = PRECI P 0 = SENSHEAT = 0 CONVZI 0 ! - Convective mixing ht. _ Testing and debug print options for micrometeorological module Print input meteorological data and internal variables (LDB) Default: F !
(F = Do not print, T = print)
(NOTE: this option produces large amounts of output) ! LDB = F !First time step for which debug data are printed (NN1) Defa Default: 1 ! NN1 = 1 ! Last time step for which debug data are printed (NN2) De Default: 1 ! NN2 = 2 ! Print distance to land internal variables (LDBCST) Default: F ! LDBC (F = Do not print, T = print) (Output in .GRD file DCST.GRD, defined in input group 0) ! LDBCST = F !Testing and debug print options for wind field module (all of the following print options control output to wind field module's output files: TEST.PRT, TEST.OUT, TEST.KIN, TEST.FRD, and TEST.SLP) Control variable for writing the test/debug wind fields to disk files (IOUTD) (0=Do not write, 1=write) Default: 0 ! I OUTD = 0 ! Number of levels, starting at the surface, to print (NZPRN2) Default: 1 Defaul t: ! NZPRN2 = 1 ļ Print the INTERPOLATED wind components ? I PRO = 0 !(IPRO) (0=no, 1=yes) Default: 0 1 Print the TERRAIN ADJUSTED surface wind components ? (IPR1) (0=no, 1=yes) Default: 0 IPR1 = 0 ! İ. Print the SMOOTHED wind components and the INITIAL DIVERGENCE fields ? (IPR2) (0=no, 1=yes) Defaul Default: 0 IPR2 = 0 ! T Print the FINAL wind speed and direction fields ? (IPR3) (0=no, 1=yes) IPR3 = 0 ! Default: 0 1 Print the FINAL DIVERGENCE fields ? (IPR4) (O=no, 1=yes) De Default: 0 ! IPR4 = 0 ! Print the winds after KINEMATIC effects are added ?

Page 5

CMM2.inp Default: 0 (IPR5) (0=no, 1=yes) ! IPR5 = 0 ! Print the winds after the FROUDE NUMBER adjustment is made ? (IPR6) (O=no, 1=yes) ! I PR6 = 0 ! Default: 0 Print the winds after SLOPE FLOWS are added ? (IPR7) (0=no, 1=yes) Default: 0 IPR7 = 0 ! I. Print the FINAL wind field components ? (IPR8) (O=no, 1=yes) Defaul Default: 0 ! IPR8 = 0 ! ! END! _____ INPUT GROUP: 4 -- Meteorological data options SERVATION MODE (NOOBS) Default: 0 ! NOOBS = 2 ! 0 = Use surface, overwater, and upper air stations 1 = Use surface and overwater stations (no upper air observations) Use MM4/MM5/3D.DAT for upper air data 2 = No surface, overwater, or upper air observations Use MM4/MM5/3D.DAT for surface, overwater, and upper air data NO OBSERVATION MODE NUMBER OF SURFACE & PRECIP. METEOROLOGICAL STATIONS Number of surface stations (NSSTA) No default ! NSSTA = 0 !Number of precipitation stations (NPSTA=-1: flag for use of MM5/3D.DAT precip data) (NPSTA) No default ! NPSTA = -1 ! CLOUD DATA OPTIONS Gridded cloud fields: (ICLOUD) Default: 0 ! | CLOUD = 3 ! ICLOUD = 0 - Gridded clouds not used ICLOUD = 1 - Gridded CLOUD. DAT generated as OUTPUT ICLOUD = 2 - Gridded CLOUD. DAT read as INPUT ICLOUD = 3 - Gridded cloud cover from Prognostic Rel. Humidity at 850mb (Teixera) FILE FORMATS Surface meteorological data file format (I FORMS) Default: 2 (1 = unformatted (e.g., SMERGE output)) (2 = formatted (free-formatted user input)) ! | FORMS = 2 !Precipitation data file format (I FORMP) Default: 2 (1 = unformatted (e.g., PMERGE output)) (2 = formatted (free-formatted user input)) ! | FORMP = 2 ! Cloud data file format (IFORMC) Default: 2 ! IFORMC (1 = unformatted - CALMET unformatted output) (2 = formatted - free-formatted CALMET output or user input) ! | FORMC = 2 ! ! END! _____ INPUT GROUP: 5 -- Wind Field Options and Parameters WIND FIELD MODEL OPTIONS Model selection variable (IWFCOD) 0 = Objective analysis only 1 = Diagnostic wind module Default: 1 ! IWFCOD = 1 ! Compute Froude number adjustment effects ? (IFRADJ) (0 = NO, 1 = YES) Default: 1 ! I FRADJ = 1 ! Compute kinematic effects ? (IKINE) (0 = N0, 1 = YES)Default: 0 ! I KI NE = 1 ! Use O'Brien procedure for adjustment of the vertical velocity ? (IOBR) (0 = N0, 1 = YES)Default: 0 ! I OBR = 1 ! Compute slope flow effects ? (ISLOPE) Default: 1 (0 = N0, 1 = YES)! I SLOPE = 1 !

CMM2. inp Extrapolate surface wind observations to upper layers ? (IEXTRP) (1 = no extrapolation is done, Default: -4 I = I = 1a power law extrapolation is done,
b power law extrapolation used,
a user input multiplicative factors for layers 2 - NZ used (see FEXTRP array)
4 = similarity theory used
-1, -2, -3, -4 = same as above except layer 1 data at upper air stations are ignored Extrapolate surface winds even if calm? (ICALM) (0 = NO, 1 = YES) ! I CALM = 0 !Default: 0 Layer-dependent biases modifying the weights of surface and upper air stations (BLAS(NZ)) -1<=BLAS<=1 -1<=BLAS<=1
Negative BLAS reduces the weight of upper air stations (e.g. BLAS=-0.1 reduces the weight of upper air stations by 10%; BLAS= -1, reduces their weight by 100 %)
Positive BLAS reduces the weight of surface stations (e.g. BLAS= 0.2 reduces the weight of surface stations by 20%; BLAS=1 reduces their weight by 100%)
Zero BLAS Leaves weights unchanged (1/R**2 interpolation) Default: NZ*0 ! BLAS = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 Minimum distance from nearest upper air station of surface station for which extrapolation of surface winds at surface station will be allowed (RMIN2: Set to -1 for IEXTRP = 4 or other situations where all surface stations should be extrapolated) I RMIN2 = 4 0 IDefault: 4. Use gridded prognostic wind field model output fields as input to the diagnostic wind field model (IPROG) Default: 0 ! IPROG = 14 ! (0 = No, [IWFCOD = 0 or 1] 1 = Yes, use CSUMM prog. winds as Step 1 field, [IWFCOD = 0] 2 = Yes, use CSUMM prog. winds as initial guess field [IWFCOD = 1] 3 = Yes, use winds from MM4. DAT file as Step 1 field [IWFCOD = 0] 4 = Yes, use winds from MM4. DAT file as initial guess field [IWFCOD = 1] 5 = Yes, use winds from MM4. DAT file as observations [IWFCOD = 1] 13 = Yes, use winds from MM5/3D. DAT file as Step 1 field [IWFCOD = 0] 14 = Yes, use winds from MM5/3D. DAT file as initial guess field [IWFCOD = 1] 15 = Yes, use winds from MM5/3D. DAT file as initial guess field [IWFCOD = 1] Timestep (hours) of the prognostic model input data (ISTEPPG) Default: 1 ! | STEPPG = 1 !Use coarse CALMET fields as initial guess fields (IGFMET) (overwrites IGF based on prognostic wind fields if any) Default: 0 Í IGFMET = 0 ! RADIUS OF INFLUENCE PARAMETERS Use varying radius of influence Default: F (if no stations are found within RMAX1, RMAX2, or RMAX3, then the closest station will be used) ! LVARY = T! Maximum radius of influence over land in the surface layer (RMAX1) No default ! RMAX1 = 2 !Units: km Maximum radius of influence over land aloft (RMAX2) No default ! RMAX2 = 2 ! Units: km Maximum radius of influence over water (RMAX3) No default ! RMAX3 = 2 ! Units: km OTHER WIND FIELD INPUT PARAMETERS Minimum radius of influence used in the wind field interpolation (RMIN) Default: 0.1 ! RMIN = 0.1 ! Units: km Radius of influence of terrain features (TERRAD) ! TERRAD = 5.00 ! No default Units: km Relative weighting of the first guess field and observations in the SURFACE layer (R1) (R1 is the distance from an observational station at which the observation and first guess field are conclusive weighted) No default ! R1 = 3.00 !Units: km equally weighted) Relative weighting of the first Page 7

1

	CI	MM2.inp	
	guess field and observations in the layers ALOFT (R2) (R2 is applied in the upper layers in the same manner as R1 is used in the surface layer).	No default Units: km	! R2 = 3.00 !
	Relative weighting parameter of the prognostic wind field data (RPROG) (Used only if IPROG = 1) 	No default Units: km	! RPROG = 0. !
	Maximum acceptable divergence in the divergence minimization procedure (DIVLIM)	Default: 5.E-6	! DIVLIM= 5.0E-06 !
	Maximum number of iterations in the divergence min. procedure (NITER)	Default: 50	! NITER = 50 !
2	Number of passes in the smoothing procedure (NSMTH(NZ)) NOTE: NZ values must be entered Default: 2, (mxnz-1)*4 ! NSMTH = , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 ,	4,4!	
99	Maximum number of stations used in each layer for the interpolation of data to a grid point (NINTR2(NZ)) NOTE: NZ values must be entered , 99 , 99 , 99 , 99 , 99 , 99 , 99	Default: 99. 9 , 99 , 99 ,	! NI NTR2 = 99 !
	Critical Froude number (CRITFN)	Default: 1.0	! CRITFN = 1.00 !
	Empirical factor controlling the influence of kinematic effects (ALPHA)	Default: 0.1	! ALPHA = 0.1 !
	Multiplicative scaling factor for extrapolation of surface observations to upper layers (FEXTR2(NZ)) ! FEXTR2 = 0., 0., 0., 0., 0., 0., 0., (Used only if LEXTRP = 3 or -3)	Default: NZ*0.0 0., 0., 0., 0.	ļ
	BARRI ER INFORMATI ON		
	Number of barriers to interpolation of the wind fields (NBAR)	Default: O	! NBAR = 0 !
	Level (1 to NZ) up to which barriers apply (KBAR)	Default: NZ	! KBAR = 12 !
	THE FOLLOWING 4 VARIABLES ARE INCLUDED ONLY IF NBAR > 0 NOTE: NBAR values must be entered for each variable) No defaults Units: km	
	X coordinate of BEGINNING of each barrier (XBBAR(NBAR)) Y coordinate of BEGINNING of each barrier (YBBAR(NBAR))	! XBBAR = 0. ! ! YBBAR = 0. !	
	X coordinate of ENDING of each barrier (XEBAR(NBAR)) Y coordinate of ENDING of each barrier (YEBAR(NBAR))	! XEBAR = 0. ! ! YEBAR = 0. !	
	DIAGNOSTIC MODULE DATA INPUT OPTIONS		
	Surface temperature (IDIOPT1) O = Compute internally from hourly surface observations or 1 = Read preprocessed values from a data file (DIAG.DAT)	Default: O prognostic fiel	!IDIOPT1 = 0 ! ds
	Surface met. station to use for the surface temperature (ISURFT) (Must be a value from 1 to NSSTA) (Used only if IDIOPT1 = 0)	No default	! ISURFT = 1 !
	Temperature lapse rate used in the computation of terrain-induced circulations (IDIOPT2) O = Compute internally from (at lea upper air observations or progr 1 = Read hourly preprocessed values from a data file (DIAG.DAT)	Default: 0 ast) twice-daily nostic fields S	! IDIOPT2 = 0 !
	Upper air station to use for		

CMM2. inp the domain-scale lapse rate (IUPT) No default (Must be a value from 1 to NUSTA) (Used only if IDIOPT2 = 0) ! IUPT = -1 ! Depth through which the domain-scale lapse rate is computed (ZUPT) Default: 200. (Used only if IDIOPT2 = 0) Units: meters ! ZUPT = 200.0 ! Initial Guess Field Winds (IDIOPT3) Default: 0 ! I DI OPT3 = 0 ! 0 = Compute internally from observations or prognostic wind fields 1 = Read hourly preprocessed domain-average wind values from a data file (DLAG. DAT) Upper air station to use for the initial guess winds (IUPWND) Default: -1 (Must be a value from -1 to NUSTA, with -1 indicating 3-D initial guess fields, and IUPWND>1 domain-scaled (i.e. constant) IGF) (Used only if IDIOPT3 = 0) Default: -1 ! I U P W N D = -1 !Bottom and top of layer through which the domain-scale winds are computed (ZUPWND(1), ZUPWND(2)) Defaults: 1., 1000. (Used only if IDIOPT3 = 0, NOOBS>0 and IUPWND>0) Defaults: 1., 1000. ! ZUPWND= 1., 1000. ! Units: meters Observed surface wind components for wind field module (IDIOPT4) Default: 0 O = Read WS, WD from a surface data file (SURF.DAT) 1 = Read hourly preprocessed U, V from a data file (DIAG.DAT) ! | D | O P T 4 = 0 !Observed upper air wind components for wind field module (IDIOPT5) Default: 0 0 = Read WS, WD from an upper air data file (UP1.DAT, UP2.DAT, etc.) 1 = Read hourly preprocessed U, V from a data file (DIAG.DAT) ! I DI OPT5 = 0 ! LAKE BREEZE INFORMATION Use Lake Breeze Module (LLBREZE) Default: F ! LLBREZE = F ! Number of Lake breeze regions (NBOX) ! NBOX = 0 ! X Grid line 1 defining the region of interest ! XG1 = 0. !X Grid line 2 defining the region of interest ! XG2 = 0. !Y Grid line 1 defining the region of interest ! YG1 = 0. ! Y Grid line 2 defining the region of interest ! YG2 = 0. !X Point defining the coastline (Straight line) (XBCST) (KM) Default: none ! X ! XBCST = 0. ! (KM) Y Point defining the coastline (Straight line) (YBCST) (KM) Default: none ! YBCST = 0. ! Default: noñe X Point defining the coastline (Straight line) (XECST) (KM) Default: none ! X ! XECST = 0. ! Y Point defining the coastline (Straight line) (YECST) (KM) Default: none ! YECST = 0. ! Number of stations in the region De (Surface stations + upper air stations) Default: none ! NLB = 0 ! Station ID's in the region (METBXID(NLB)) (Surface stations first, then upper air stations) ! METBXID = 0! ! END!

INPUT GROUP: 6 -- Mixing Height, Temperature and Precipitation Parameters

CMM2.inp

Neutral, mechanical equation (CONSTB) D Convective mixing ht. equation (CONSTE) D Stable mixing ht. equation (CONSTN) D Overwater mixing ht. equation (CONSTW) D Absolute value of Coriolis parameter (FCORIOL) D	Default: 1.41 Default: 0.15 Default: 2400. Default: 0.16 Default: 1.E-4 Jnits: (1/s) Default: 1	! CONSTB = 1.41 ! ! CONSTE = 0.15 ! ! CONSTN = 2400.! ! CONSTW = 0.16 ! ! FCORIOL = 1.E-4!	
	Default: 1	! I AVEZI = 1 !	
SPATIAL AVERAGING OF MIXING HEIGHTS	Default: 1	! I AVEZI = 1 !	
Conduct spatial averaging (IAVEZI) (O=no, 1=yes) D)efaul t· 1		
Max. search radius in averaging process (MNMDAV) D U	Jnits: Grid	! MNMDAV = 1 !	
Half-angle of upwind looking cone for averaging (HAFANG) D U	Default: 30. Jnits: deg.	! HAFANG = 30. !	
Layer of winds used in upwind averaging (ILEVZI) D (must be between 1 and NZ)	Default: 1	! I LEVZI = 1 !	
CONVECTIVE MIXING HEIGHT OPTIONS: Method to compute the convective mixing height(IMIHXH) D 1: Maul-Carson for land and water c -1: Maul-Carson for land cells only OCD mixing height overwater 2: Batchvarova and Gryning for land -2: Batchvarova and Gryning for land OCD mixing height overwater	Default: 1 cells - d and water cel d cells only	! M XH = 1 ! s	
Threshold buoyancy flux required to sustain convective mixing height growth overland (THRESHL) D (expressed as a heat flux u per meter of boundary layer)	n Default: 0.05 units: W/m3	! THRESHL = 0.05 !	
Threshold buoyancy flux required to sustain convective mixing height growth overwater (THRESHW) D (expressed as a heat flux u per meter of boundary layer)	n Default: 0.05 units: W/m3	! THRESHW = 0.05 !	
Option for overwater lapse rates used in convective mixing height growth (ITWPROG) D 0 : use SEA.DAT lapse rates and deltaT conditions if missing) 1 : use prognostic lapse rates (only if and SEA.DAT deltaT (or neutral if m 2 : use prognostic lapse rates and prog (only if iprog>12 and 3D.DAT versio	Default: 0 (or assume neu ^r IPROG>2) nissing) gnostic delta T on# 2.0 or high	! ITWPROG = 0 ! utral T her)	
Land Use category ocean in 3D.DAT datas (ILUOC3D) Note: if 3D.DAT from MM5 version 3.0, i if MM4.DAT, typically i	sets Default: 16 Iuoc3d = 16 Iuoc3d = 7	! I LUOC3D = 16 !	
OTHER MIXING HEIGHT VARIABLES			
Minimum potential temperature lapse rate in the stable layer above the current convective mixing ht. D (DPTMIN) U Depth of layer above current conv. mixing height through which lapse D rate is computed (DZZI) U	Default: 0.001 Jnits: deg. K/m Default: 200. Jnits: meters	! DPTMIN = 0.001 ! m ! DZZI = 200. !	
Minimum overland mixing height D (ZIMIN) Maximum overland mixing height D (ZIMAX) Minimum overwater mixing height D (ZIMINW) (Not used if observed U overwater mixing hts. are used) Maximum overwater mixing height D (ZIMAXW) (Not used if observed U	Default: 50. Jnits: meters Default: 3000. Jnits: meters Default: 50. Jnits: meters Default: 3000. Jnits: meters	 ! ZI MI N = 50.0 ! ! ZI MAX = 3000.0 ! ! ZI MI NW = 50.0 ! ! ZI MAXW = 3000.0 	i

CMM2.inp

overwater mixing hts. are used)		
OVERWATER SURFACE FLUXES METHOD and PARA (ICOARE) 0: original deltaT method (OCD) 10: COARE with no wave parameteriz: 11: COARE with wave option jwave=1 and default wave properties -11: COARE with wave option jwave=1 and observed wave properties (I 12: COARE with wave option 2 (Taylo and observed wave properties (I	METERS Default: 10 ation (jwave=0, C (Oost et al.) must be in SEA.DA or and Yelland) or and Yelland) must be in SEA.DA	!ICOARE = 10 ! harnock) T files) T files)
Coastal/Shallow water length scale (for modified z0 in shallow water) (COARE fluxes only) De	(DSHELF) fault: 0.	! DSHELF = 0. !
uni COARE warm layer computation (IWA 1: on - 0: off (must be off if SS IR radiometer) De:	its: km RM) T measured with fault: O	! IWARM = O !
COARE cool skin layer computation 1: on - 0: off (must be off if SS IR radiometer) De	(ICOOL) T measured with fault: O	! I COOL = 0 !
TEMPERATURE PARAMETERS		
3D temperature from observations or from prognostic data? (ITPROG)	Defaul t: 0	! ITPROG = 2 !
 0 = Use Surface and upper air stati (only if NOOBS = 0) 1 = Use Surface stations (no upper Use MM5/3D. DAT for upper air da (only if NOOBS = 0, 1) 2 = No surface or upper air observation Use MM5/3D. DAT for surface and (only if NOOBS = 0, 1, 2) 	ions air observations ata ations upper air data)
Interpolation type (1 = 1/R; 2 = 1/R**2)	Defaul t: 1	! I RAD = 1 !
Radius of influence for temperature interpolation (TRADKM)	Default: 500. Units: km	! TRADKM = 500. !
Maximum Number of stations to include in temperature interpolation (NUMTS)	Default: 5	! NUMTS = 5 !
Conduct spatial averaging of temp- eratures (IAVET) (O=no, 1=yes) (will use mixing ht MNMDAV,HAFANG so make sure they are correct)	Default: 1	! I AVET = 1 !
Default temperature gradient below the mixing height over water (TGDEFB)	Default:0098 Units: K/m	! TGDEFB = -0.0098 !
Default temperature gradient above the mixing height over water (TGDEFA)	Default:0045 Units: K/m	! TGDEFA = -0.0045 !
Beginning (JWAT1) and ending (JWAT2) land use categories for temperature interpolation over water Make bigger than largest land use to disabl	le	! JWAT1 = 999 ! ! JWAT2 = 999 !
PRECIP INTERPOLATION PARAMETERS		
Method of interpolation (NFLAGP) (1=1/R,2=1/R**2,3=EXP/R**2) Radius of Influence (SIGMAP) (0.0 => use half dist. btwn nearest stns w & w/out pracin when NELACP = 2)	Default: 2 Default: 100.0 Units: km	! NFLAGP = 2 ! ! SIGMAP = 100. !
Minimum Precip. Rate Cutoff (CUTP) (values < CUTP = 0.0 mm/hr) !END!	Default: 0.01 Units: mm/hr	! CUTP = 0.01 !

INPUT GROUP: 7 -- Surface meteorological station parameters

CMM2. i np SURFACE STATION VARIABLES (One record per station -- 0 records in all) 1 2 Name ID X coord. (km) Y coord. Ti me Anem. (km) zone Ht. (m) _ _ _ _ _ _ _ _ _ _ 1 Four character string for station name (MUST START IN COLUMN 9) $\,$ 2 Six digit integer for station ID ! END! _____ INPUT GROUP: 8 -- Upper air meteorological station parameters ----UPPER AIR STATION VARIABLES (One record per station -- 0 records in all) 2 1 ΙD X coord. Name Y coord. Time zone (km) (km) . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -----1 Four character string for station name (MUST START IN COLUMN 9) 2 Five digit integer for station ID ! END! INPUT GROUP: 9 -- Precipitation station parameters PRECIPITATION STATION VARIABLES (One record per station -- 0 records in all) (NOT INCLUDED IF NPSTA = 0) 1 2 Station X coord. Y coord. (km) (km) Name Code 1 Four character string for station name (MUST START IN COLUMN 9) 2 Six digit station code composed of state code (first 2 digits) and station ID (last 4 digits) $\,$! END!

Appendix D – CALPUFF input file

CP01. I NP

3133897 Castlemaine Landfill Buffer Odour Assessment Run 1 CMM2. DAT 2012 20/04/16 MA ---- Run title (3 lines) ------------CALPUFF MODEL CONTROL FILE INPUT GROUP: 0 -- Input and Output File Names Default Name Type File Name CALMET. DAT i nput ! METDAT =L: \j obs\3133897\Cal met\CMM2. DAT 1 or I SCMET. DAT i nput * I SCDAT = or PLMMET.DAT i nput * PLMDAT = or PROFILE. DAT SURFACE. DAT RESTARTB. DAT * PRFDAT = i nput * i nput i nput SECDAT _ * RSTARTB= ! PUFLST =L: \j obs\3133897\Cal puff\CP01.lst !
! CONDAT =L: \j obs\3133897\Cal puff\CP01C.DAT
* DFDAT = * CALPUFF. LST output CONC. DAT DFLX. DAT WFLX. DAT Т output output * WFDAT output VI SB. DAT TK2D. DAT RH02D. DAT RESTARTE. DAT * VI SDAT = output * output T2DDAT = * RHODAT output ! RSTARTE=L: \j obs\3133897\Cal puff\RESTARTE. DAT 1 output Emission Files PTEMARB. DAT VOLEMARB. DAT i nput * PTDAT * VOLDAT = * input BAEMARB. DAT LNEMARB. DAT * ARDAT * input = * * LNDAT input = Other Files OZONE. DAT OZDAT i nput = VD. DAT i nput * VDDAT * VD. DAT CHEM. DAT H2O2. DAT HI LL. DAT HI LLRCT. DAT COASTLN. DAT FLUXBDY. DAT * CHEMDAT= * i nput * H202DAT= input i nput HI LDAT= * i nput RCTDAT= CSTDAT= i nput i nput * * BDYDAT= BCON. DAT i nput * BCNDAT= * DEBUG. DAT output DEBUG = FLXDAT= BALDAT= FOGDAT= MASSFLX. DAT output * MASSBAL. DAT FOG. DAT output * output All file names will be converted to lower case if LCFILES = T Otherwise, if LCFILES = F, file names will be converted to UPPER CASE T = lower case ! LCFILES = F ! F = UPPER CASE NOTE: (1) file/path names can be up to 70 characters in length Provision for multiple input files Number of CALMET. DAT files for run (NMETDAT) ! NMETDAT = Default: 1 1 Ţ Number of PTEMARB. DAT files for run (NPTDAT) ! NPTDAT = 0 ! Default: 0 Number of BAEMARB. DAT files for run (NARDAT) Defaùlt: 0 ! NARDAT = 0 ! Number of VOLEMARB.DAT files for run (NVOLDAT) Default: 0 ! NVOLDAT = 0 ! ! END! Subgroup (Oa) The following CALMET. DAT filenames are processed in sequence if NMETDAT>1

```
Default Name Type
```

File Name

CP01. I NP * METDAT= *END* i nput none _____ INPUT GROUP: 1 -- General run control parameters Option to run all periods found ! METRUN = 0 ! in the met. file (METRUN) Default: 0 METRUN = 0 - Run period explicitly defined below METRUN = 1 - Run all periods in met. file Year (IBYR) -- No default Month (IBMO) -- No default Day (IBDY) -- No default Hour (IBHR) -- No default IBYR = Starting date: 2012 ! (used only if METRUN = 0) ! | BMO = ! | BDY = 1 1 ! I BHR = 1 Base time zone PST = 8., MST = 7. CST = 6., EST = 5. (XBTZ) -- No default ! XBTZ = -10.0 ! Length of run (hours) (IRLG) -- No default ! I RLG = 8784 ! Number of chemical species (NSPEC) Défault: 5 I NSPEC = 1 INumber of chemical species to be emitted (NSE) Default: 3 ! NSE = 1 ! Flag to stop run after SETUP phase (ITEST) Default: 2 ! ITE (Used to allow checking of the model inputs, files, etc.) ITEST = 1 - STOPS program after SETUP phase ITEST = 2 - Continues with execution of program after SETUP ! I TEST = 2 ! Restart Configuration: Control flag (MRESTART) Default: 0 ! MRESTART = 2 I. 0 = Do not read or write a restart file 1 = Read a restart file at the beginning of the run 2 = Write a restart file during run
3 = Read a restart file at beginning of run and write a restart file during run Number of periods in Restart output cycle (NRESPD) Default: 0 ! NRESPD = 336 1 0 = File written only at last period >0 = File updated every NRESPD periods Meteorological Data Format (METFM) Défault: 1 ! METFM = 1 ! METFM = 1 - CALMET binary file (CALMET.MET) METFM = 2 - ISC ASCII file (ISCMET.MET) METFM = 3 - AUSPLUME ASCII file (PLMMET.MET) METFM = 4 - CTDM plus tower file (PROFILE.DAT) and surface parameters file (SURFACE.DAT) METFM = 5 - AERMET tower file (PROFILE.DAT) and surface parameters file (DIPLACE DAT) and surface parameters file (SURFACE. DAT) Meteorological Profile Data Format (MPRFFM) (used only for METFM = 1, 2, 3) Default: 1 ! MPRFFM = 1 !MPRFFM = 1 - CTDM plus tower file (PROFILE.DAT) MPRFFM = 2 - AERMET tower file (PROFILE.DAT) PG sigma-y is adjusted by the factor (AVET/PGTIME)**0.2 Averaging Time (minutes) (AVET) Default: 60.0 ! AVET = 60. ! PG Averaging Time (minutes) (PGTIME) Default: 60.0 ! PGTIME = 60. ! I FNDI

INPUT GROUP: 2 -- Technical options

	CP01. I NP			
Vertical distribution used in the near field (MGAUSS) 0 = uniform 1 = Gaussian	Defaul t:	1	ļ	MGAUSS = 1 !
Terrain adjustment method (MCTADJ) 0 = no adjustment 1 = ISC-type of terrain adjustment 2 = simple, CALPUFF-type of terrain adjustment 3 = partial plume path adjustment	Default:	3	ļ	MCTADJ = 3 !
Subgrid-scale complex terrain flag (MCTSG) O = not modeled 1 = modeled	Defaul t:	0	İ	MCTSG = 0 !
Near-field puffs modeled as elongated slugs? (MSLUG) 0 = no 1 = yes (slug model used)	Defaul t:	0	ļ	MSLUG = 0 !
Transitional plume rise modeled? (MTRANS) 0 = no (i.e., final rise only) 1 = yes (i.e., transitional rise co	Default: omputed)	1	ļ	MTRANS = 1 !
Stack tip downwash? (MTIP) 0 = no (i.e., no stack tip downwas 1 = yes (i.e., use stack tip downwas	Defaul t: sh) ash)	1	ļ	MTIP = 1 !
Method used to simulate building downwash? (MBDW) 1 = ISC method 2 = PRIME method	Defaul t:	1	İ	MBDW = 1 !
Vertical wind shear modeled above stack top? (MSHEAR) 0 = no (i.e., vertical wind shear 1 = yes (i.e., vertical wind shear	Default: not model modeled)	0 ed)	İ	MSHEAR = O !
Puff splitting allowed? (MSPLIT) O = no (i.e., puffs not split) 1 = yes (i.e., puffs are split)	Defaul t:	0	ļ	MSPLIT = 0 !
<pre>Chemical mechanism flag (MCHEM) 0 = chemical transformation not modeled 1 = transformation rates computed internally (MESOPUFF II scheme) 2 = user-specified transformation rates used 3 = transformation rates computed internally (RIVAD/ARM3 scheme) 4 = secondary organic aerosol forma computed (MESOPUFF II scheme formation)</pre>	Default:) ation pr OH)	1	İ	MCHEM = O !
Aqueous phase transformation flag (MAG (Used only if MCHEM = 1, or 3) 0 = aqueous phase transformation not modeled 1 = transformation rates adjusted for aqueous phase reactions	DCHEM) Default:	0	ļ	MAQCHEM = 0 !
Wet removal modeled ? (MWET) O = no 1 = yes	Defaul t:	1	ļ	MWET = O !
Dry deposition modeled ? (MDRY) 0 = no 1 = yes (dry deposition method specified for each species in Input Group 3)	Defaul t:	1	ļ	MDRY = 0 !
Gravitational settling (plume tilt) modeled ? (MTILT) 0 = no 1 = yes (puff center falls at the gravitati settling velocity for 1 particles	Defaul t: onal	0	ļ	MTILT = O !
Restrictions: - MDRY = 1 - NSPEC = 1 (must be particle spectrum) - sg = 0 GEOMETRIC STANDARD DE set to zero for a sir	ecies as w EVIATION i ngle parti	ell) n Grou cle di	ip an	8 is neter

1 = dispersion coefficients computed from measured values of turbulence, sigma v, sigma w = dispersion coefficients from internally calculated

- 2
- sigma v, urban areas
- urban areas
 4 = same as 3 except PG coefficients computed using the MESOPUFF II eqns.
 5 = CTDM sigmas used for stable and neutral conditions. For unstable conditions, sigmas are computed as in MDISP = 3, described above. MDISP = 5 assumes that measured values are read

Sigma-v/sigma-theta, sigma-w measurements used? (MTURBVW) (Used only if MDISP = 1 or 5) Default: 3 ! MTURBVW = 3 ! 1 = use sigma-v or sigma-theta measurements from PROFILE. DAT to compute sigma-y (valid for METFM = 1, 2, 3, 4, 5) 2 = use sigma-w measurements from PROFILE. DAT to compute sigma-z (valid for METFM = 1, 2, 3, 4, 5) 3 = use both sigma-(v/theta) and sigma-w from PROFILE. DAT to compute sigma-y and sigma-z (valid for METFM = 1, 2, 3, 4, 5) 4 = use sigma-theta measurements from PLMMET. DAT to compute sigma-y (valid only if METFM = 3) Back-up method used to compute dispersion when measured turbulence data are missing (MDISP2) Defa (used only if MDISP = 1 or 5) Default: 3 ! MDISP2 = 3 ! 2 = dispersion coefficients from internally calculated a sigma v, sigma w using micrometeorological variables (u*, w*, L, etc.)
 3 = PG dispersion coefficients for RURAL areas (computed using the ISCST multi-segment approximation) and MP coefficients in unperpendent. urban areas 4 = same as 3 except PG coefficients computed using the MESOPUFF II eqns. [DIAGNOSTIC FEATURE] Method used for Lagrangian timescale for Sigma-y (used only if MDISP=1, 2 or MDISP2=1, 2) (MTAULY) 0 = Draxler default 617.284 (s) 1 = Computed as Lag. Length / (.75 q) -- after SCIPUFF 10 < Direct user input (s) -- e.g., 306.9 ! MTAULY = 0 ![DIAGNOSTIC FEATURE] Method used for Advective-Decay timescale for Turbulence (used only if MDISP=2 or MDISP2=2) (MTAUADV) Default: 0 ! MTAUADV ! MTAUADV = 0 ! 0 = No turbulence advection 1 = Computed (OPTION NOT IMPLEMENTED) 10 < Direct user input (s) -- e.g., -- e.g., 300 Method used to compute turbulence sigma-v & sigma-w using micrometeorological variables (Used only if MDISP = 2 or MDISP2 = 2) (MCTURB) 1 = Standard CALPUFF subroutines 2 = AERMOD subroutines Default: 1 ! MCTURB = 1 !PG sigma-y,z adj. for roughness? (MROUGH) Default: 0 ! MROUGH = 0 !0 = no 1 = yes Partial plume penetration of elevated inversion? Default: 1 ! MPARTL = 1 ! (MPARTL) 0 = no 1 = yes Strength of temperature inversion Def provided in PROFILE.DAT extended records? Default: 0 ! MTINV = 0 !(MTINV) 0 = no (computed from measured/default gradients) 1 = yes PDF used for dispersion under convective conditions? Default: 0 ! MPDF = 0 ! (MPDF) Page 4

CP01. I NP 0 = no1 = yesSub-Grid TIBL module used for shore line? Default: 0 ! MSGTIBL = 0 ! (MSGTIBL) 0 = no 1 = yes Boundary conditions (concentration) modeled? ! MBCON = 0 !Default: 0 (MBCON) 0 = no 1 = yes, using formatted BCON.DAT file 2 = yes, using unformatted CONC.DAT file MBCON > 0 requires that the last species modeled be 'BCON'. Mass is placed in species BCON when generating boundary condition puffs so that clean air entering the modeling domain can be simulated in the same way as polluted air. Specify zero emission of species BCON for all regular sources. Note: Individual source contributions saved? Default: 0 ! MSOURCE = 0 ! (MSOURCE) 0 = no 1 = yes Analyses of fogging and icing impacts due to emissions from arrays of mechanically-forced cooling towers can be performed using CALPUFF in conjunction with a cooling tower emissions processor (CTEMISS) and its associated postprocessors. Hourly emissions of water vapor and temperature from each cooling tower cell are computed for the current cell configuration and ambient conditions by CTEMISS. CALPUFF models the dispersion of these emissions and provides cloud information in a specialized format for further analysis. Output to FOG. DAT is provided in either 'plume mode' or 'receptor mode' format. Configure for FOG Model output? Default: 0 ! MFOG = 0 ! (MFOG) 0 = no 1 = yes - report results in PLUME Mode format 2 = yes - report results in RECEPTOR Mode format Test options specified to see if they conform to regulatory values? (MREG) Default: 1 ! MREG = 0 ! 0 = NO checks are made 1 = Technical options must conform to USEPA Long Range Transport (LRT) guidance METFM 1 or 2 AVET 60. (min) PGTIME 60. (min) MGAUSS 1 3 MCTAD.J MTRANS 1 MTIP 1 MCHEM 1 or 3 (if modeling SOx, NOx) MWET MDRY 1 1 MDI SP 2 or 3 0 if MDISP=3 MPDF 1 if MDISP=2 MROUGH 0 MPARTL SYTDEP 550. (m) 0 0.5 (m/s) SVMI N ! END! _____ INPUT GROUP: 3a, 3b -- Species list _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Subgroup (3a)

Page 5

The following species are modeled:

L CSPEC =	ODOR I		01. I NP	
SPECIES NAME (Limit: 12 Characters in length)	MODELED (0=N0, 1=YES)	EMI TTED (0=N0, 1=YI	Dry DEPOSI TED ES) (0=N0, 1=COMPUTED-GAS 2=COMPUTED-PARTI CLE 3=USER-SPECI FI ED)	OUTPUT GROUP NUMBER (O=NONE, 1=1st CGRUP, 2=2nd CGRUP, 3= etc.)
! ODOR	= 1,	1,	О,	0!
! END!				
Note: The La: bounda typi cal removal	st species in (3 ry condition op lly be modeled a l).	Ba) must be 'BCC ion (MBCON > 0) as inert (no che	DN' when using the). Species BCON should em transformation or	
Subgroup (3b)				
The following for certain s CGRUP name wi Use this feat by treating e Order must be	names are used pecies are combi 11 be used as th ure to model spe ach size-range a consistent with	for Species-Gro ned (added) pri ne species name ecific particle- ns a separate sp n 3(a) above.	oups in which results for to output. The in output files. -size distributions pecies.	
Proi ection	Map Projectic	on and Grid cont	trol parameters	
Map projec [.] (PMAP)	ti on	Default: UTM	! PMAP = UTM !	
UTM : TTM : LCC : PS : EM : LAZA :	Universal Trans Tangential Tran Lambert Conform Polar Stereogra Equatorial Merc Lambert Azimuth	overse Mercator nsverse Mercator nal Conic aphic cator nal Equal Area	r -	
False Easti (Used only (FEAST) (FNORTH)	ing and Northinc if PMAP= TTM, Ì	g (km) at the pr CC, or LAZA) Default=0.0 Default=0.0	rojection origin ! FEAST = 0.000 ! ! FNORTH = 0.000 !	
UTM zone((Used only (IUTMZN)	1 to 60) if PMAP=UTM)	No Default	! I UTMZN = 55 !	
Hemisphere (Used only	for UTM project if PMAP=UTM)	i on?		
(UTMHEM) N : S :	Northern hemisp Southern hemisp	Default: N ohere projection ohere projection	! UTMHEM = S ! n n	
Latitude an (Used only (RLATO) (RLONO)	nd Longitude (de if PMAP= TTM, L	ecimal degrees) LCC, PS, EM, or No Default No Default	of projection origin LAZA) ! RLATO = ON ! ! RLONO = OE !	
TTM : LCC : PS : EM : LAZA:	RLONO identifie RLATO selected RLONO identifie RLATO selected RLONO identifie RLATO selected RLONO identifie RLATO is REPLAC RLONO identifie RLATO identifie	es central (true for convenience s central (true for convenience es central (grid for convenience es central meric CED by 0.0N (Eques longitude of es latitude of	e N/S) meridian of projection e N/S) meridian of projection d N/S) meridian of projection dian of projection uator) tangent-point of mapping pla	on on on I ane ane
Matching pa (Used only (XLAT1) (XLAT2)	arallel(s) of la if PMAP= LCC or	atitude (decimal ~PS) No Default No Default	degrees) for projection ! XLAT1 = ON ! ! XLAT2 = ON !	
LCC : PS :	Projection cone Projection plar (XLAT2 is not u	e slices through ne slices throug used)	n Earth's surface at XLAT1 ; gh Earth at XLAT1	and XLAT2

```
CP01. I NP
```

Note: Latitudes and longitudes should be positive, and include a letter N, S, E, or W indicating north or south latitude, and east or west longitude. For example, 35.9 N Latitude = 35.9N 118.7 E Longitude = 118.7E

Datum-region

The Datum-Region for the coordinates is identified by a character string. Many mapping products currently available use the model of the Earth known as the World Geodetic System 1984 (WGS-84). Other local models may be in use, and their selection in CALMET will make its output consistent with local mapping products. The list of Datum-Regions with official transformation parameters is provided by the National Imagery and Mapping Agency (NIMA). NIMA Datum - Regions(Examples) WGS-84 Reference Ellipsoid and Geoid, Global coverage (WGS84) NORTH AMERICAN 1927 Clarke 1866 Spheroid, MEAN FOR CONUS (NAD27) NORTH AMERICAN 1983 GRS 80 Spheroid, MEAN FOR CONUS (NAD83) NWS 6370KM Radius, Sphere ESRI REFERENCE 6371KM Radius, Sphere WGS-84 NAS-C NAR-C NWS-84 ESR-S Datum-region for output coordinates (DATUM) Default: WGS-84 ! DATUM = WGS-84 ! METEOROLOGICAL Grid: Rectangular grid defined for projection PMAP, with X the Easting and Y the Northing coordinate No. X grid cells (NX) No. Y grid cells (NY) No. vertical layers (NZ) No default ! NX = 60 No default ! NY = 60 No default I N7 =11 Grid spacing (DGRIDKM) No default ! DGRIDKM = . 4 ! Units: km Cell face heights (ZFACE(nz+1))
 Induction
 Induction

 ! ZFACE = . 0, 20.0, 40.0, 60.0, 90.0, 120.0, 180.0, 250.0, 500.0, 1000.0, 2000.0, 3000.0 !
 No defaults Reference Coordinates of SOUTHWEST corner of grid cell(1, 1): No defaul t ! XORI GKM = 238.610 ! No defaul t ! YORI GKM = 5880.795 ! X coordinate (XORIGKM) Y coordinate (YORIGKM) Units: km COMPUTATIONAL Grid:

The computational grid is identical to or a subset of the MET. grid. The lower left (LL) corner of the computational grid is at grid point (IBCOMP, JBCOMP) of the MET. grid. The upper right (UR) corner of the computational grid is at grid point (IECOMP, JECOMP) of the MET. grid. The grid spacing of the computational grid is the same as the MET. grid.

X index of LL corner (IBCOMP) (1 <= IBCOMP <= NX)	No default	! I BCOMP =	10	İ
Y index of LL corner (JBCOMP) (1 <= JBCOMP <= NY)	No default	! JBCOMP =	10	İ
X index of UR corner (IECOMP) (1 <= IECOMP <= NX)	No default	! I ECOMP =	50	İ
Y index of UR corner (JECOMP) (1 <= JECOMP <= NY)	No default	! JECOMP =	50	İ

SAMPLING Grid (GRIDDED RECEPTORS):

The lower left (LL) corner of the sampling grid is at grid point (IBSAMP, JBSAMP) of the MET. grid. The upper right (UR) corner of the sampling grid is at grid point (IESAMP, JESAMP) of the MET. grid. The sampling grid must be identical to or a subset of the computational grid. It may be a nested grid inside the computational grid. The grid spacing of the sampling grid is DGRIDKM/MESHDN.

	CP01. I NP		
Logical flag indicating if gric receptors are used (LSAMP) (T=yes, F=no)	lded Defaul t: T	! LSAMP = T !	
X index of LL corner (IBSAMP) (IBCOMP <= IBSAMP <= IECOMP)	No default	! IBSAMP = 20 !	
Y index of LL corner (JBSAMP) (JBCOMP <= JBSAMP <= JECOMP)	No default	! JBSAMP = 20 !	
X index of UR corner (IESAMP) (IBCOMP <= IESAMP <= IECOMP)	No default	! IESAMP = 40 !	
Y index of UR corner (JESAMP) (JBCOMP <= JESAMP <= JECOMP)	No default	! JESAMP = 40 !	
Nesting factor of the sampling grid (MESHDN) (MESHDN is an integer >= 1)	Defaul t: 1	! MESHDN = 4 !	
י בוערי			
INPUT GROUP: 5 Output Options			
FILE DEFAULT	VALUE	* VALUE THIS RUN	
Concentrations (ICON)1Dry Fluxes (IDRY)1Wet Fluxes (IWET)12D Temperature (IT2D)02D Density (IRHO)0Relative Humidity (IVIS)1(relative humidity file is required for visibility)	! CON = 1 ! ! DRY = 0 ! ! WET = 0 ! ! T2D = 0 ! ! RHO = 0 ! ! VIS = 0 !	
Use data compression option in outpu (LCOMPRS)	ut file? Default: T	! LCOMPRS = T !	
0 = Do not create file, 1 = create	tile		
CR PLOT FILE OUTPUT OPTION: Create a standard series of output locations of sources, receptors	out files (e.g. grids)		
suitable for plotting? (IQAPLOT) 0 = no 1 = yes	Default: 1	! IQAPLOT = 1 !	
DIAGNOSTIC MASS FLUX OUTPUT OPTIONS	St		
Mass flux across specified bound for selected species reported ho (IMFLX) 0 = no	laries ourly? Default: O	! IMFLX = 0 !	
1 = yes (FLUXBDY.DAT and MASSF are specified in Inpu	ELX.DAT filenames it Group O)		
Mass balance for each species reported hourly? (IMBAL)	Default: 0	! IMBAL = O !	
1 = yes (MASSBAL.DAT filename specified in Input Group	is 0)		
LINE PRINTER OUTPUT OPTIONS:			
Print concentrations (ICPRT) Print dry fluxes (IDPRT) Print wet fluxes (IWPRT) (O = Do not print, 1 = Print)	Defaul t: 0 Defaul t: 0 Defaul t: 0	! I CPRT = 1 ! ! I DPRT = 0 ! ! I WPRT = 0 !	
Concentration print interval (ICERQ) in hours	Default: 1	! CFR0 = 8784	
Dry flux print interval (IDFRQ) in hours	Default: 1	! I DFRQ = 1 !	
Wet flux print interval (IWFRQ) in hours	Default: 1	! IWFRQ = 1 !	

Page 8

CPO1 INP Units for Line Printer Output (IPRTU) Default: 1 ! I PRTU = 5 ! UETAULT for Deposition g/m**2/s mg/m**2/s ug/m**2/s for Concentration g/m**3 mg/m**3 1 = 2 = ug/m**3 ng/m**3 3 = ng/m**2/s 4 = 5 = Odour Units Messages tracking progress of run written to the screen ? Default: 2 ! IMESG = 2 ! (IMESG) 0 = no1 = yes (advection step, puff ID) 2 = yes (YYYYJJJHH, # old puffs, # emitted puffs) SPECIES (or GROUP for combined species) LIST FOR OUTPUT OPTIONS ---- CONCENTRATIONS ---- DRY FLUXES --------- WET FLUXES -- MASS FLUX --SPECI ES PRINTED? SAVED ON DISK? PRINTED? SAVED ON DISK? PRINTED? SAVED ON /GROUP DI SK? SAVED ON DISK? -----_ _ _ _ _ _ _ _ -----ODOR = 1, 1, 0. 0, I. 0. 0. 0 Т Note: Species BCON (for MBCON > 0) does not need to be saved on disk. OPTIONS FOR PRINTING "DEBUG" QUANTITIES (much output) Logical for debug output (LĎEBUG) Default: F ! LDEBUG = F !First puff to track (IPFDEB) Default: 1 ! | PFDEB = 1 !Number of puffs to track (NPFDEB) Default: 1 ! NPFDEB = 1 ! Met. period to start output (NN1) Default: 1 ! NN1 = 1 ! Met. period to end output (NN2) Default: 10 ! NN2 = 10 ! ! END! -----_____ INPUT GROUP: 6a, 6b, & 6c -- Subgrid scale complex terrain inputs Subgroup (6a) _ _ _ _ _ _ Number of terrain features (NHILL) Default: 0 ! NHILL = 0 !Number of special complex terrain receptors (NCTREC) ! NCTREC = 0 ! Default: 0 Terrain and CTSG Receptor data for CTSG hills input in CTDM format ? (MHILL)
1 = Hill and Receptor data created
by CTDM processors & read from
HILL. DAT and HILLRCT. DAT files
2 = Hill data created by OPTHILL &
input below in Subgroup (6b);
Decenter data in Subgroup (6c) ! MHILL = 2 ! No Default Receptor data in Subgroup (6c) Factor to convert horizontal dimensions Default: 1.0 $\,$! XHILL2M = 1.0 ! to meters (MHILL=1) Factor to convert vertical dimensions to meters (MHILL=1) $\ensuremath{\mathsf{HILL}}$ Default: 1.0 ! ZHILL2M = 1.0 ! X-origin of CTDM system relative to No Defaul CALPUFF coordinate system, in Kilometers (MHILL=1) No Default ! XCTDMKM = 0 !Y-origin of CTDM system relative to No Defaul CALPUFF coordinate system, in Kilometers (MHILL=1) No Default ! YCTDMKM = 0 !

Subgroup (6b) 1 ** HILL information SCALE 1 THETAH ZGRID RELIEF EXPO 1 EXPO 2 HI LL XC YC SCALE AMAX1 AMAX2 2 NO. (km) (km) (m) (m) (deg.) (m) (m) (m) (m) (KIII) (m) (m) ---------_ _ _ _ _ _ _ _ _ _ _ _ -----_ _ _ _ _ - - -Subgroup (6c) COMPLEX TERRAIN RECEPTOR INFORMATION XRCT YRCT ZRCT ХНН (km) (km) (m) -----_ _ _ _ 1 Description of Complex Terrain Variables: XC, YC = Coordinates of center of hill THETAH = Orientation of major axis of hill (clockwise from North) ZGRI D = Height of the 0 of the grid above mean sea l evel RELIEF = Height of the crest of the hill above the grid elevation EXPO 1 = Hill-shape exponent for the major axis EXPO 2 = Hill-shape exponent for the major axis SCALE 1 = Horizontal length scale along the major axis SCALE 2 = Horizontal length scale along the minor axis AMAX = Maximum allowed axis length for the major axis BMAX = Maximum allowed axis length for the major axis XRCT, YRCT = Coordinates of the complex terrain receptors ZRCT = Height of the ground (MSL) at the complex terrain Receptor (NOTE: MUST BE ENTERED AS A REAL NUMBER) ХНН = Hill NOTE: DATA for each hill and CTSG receptor are treated as a separate input subgroup and therefore must end with an input group terminator. _____ INPUT GROUP: 7 -- Chemical parameters for dry deposition of gases SPECI ES DI FFUSI VI TY ALPHA STAR REACTI VI TY MESOPHYLL RESISTANCE HENRY' S LAW COEFFICIENT NAME (cm** (cm**2/s) (s/cm) (di mensi onl ess) _ ----_ _ _ _ _ _ _ _ _ _ _ _ _ ------! END! INPUT GROUP: 8 -- Size parameters for dry deposition of particles For SINGLE SPECIES, the mean and standard deviation are used to compute a deposition velocity for NINT (see group 9) size-ranges, and these are then averaged to obtain a mean deposition velocity. For GROUPED SPECIES, the size distribution should be explicitly specified (by the 'species' in the group), and the standard deviation for each should be entered as 0. The model will then use the deposition velocity for the stated mean diameter. GEOMETRIC MASS MEAN GEOMETRIC STANDARD SPECI ES NAME DI AMETER DEVI ATI ON

Page 10

(microns)

(microns)

_ _ _ _ _ _ _ _

INPUT GROUP: 9 -- Miscellaneous dry deposition parameters Reference cuticle resistance (s/cm) (RCUTR) Default: 30 ! RCUTR = 30.0 ! Reference ground resistance (s/cm) Default: 10 RGR = 10.0 ! (RGR) Reference pollutant reactivity (REACTR) Default: 8 ! REACTR = 8.0 ! Number of particle-size intervals used to evaluate effective particle deposition velocity Default: 9 NINT = 9 ! (NINT) Ţ Vegetation state in unirrigated areas (IVEG) VEG=1 for active and unstressed vegetation IVEG=2 for active and stressed vegetation IVEG=3 for inactive vegetation I VEG = 1 ! Į. ! END! INPUT GROUP: 10 -- Wet Deposition Parameters Scavenging Coefficient -- Units: (sec)**(-1) Liquid Precip. Frozen Precip. Pollutant ! END! INPUT GROUP: 11 -- Chemistry Parameters Ozone data input option (MOZ) Default: 1 (Used only if MCHEM = 1, 3, or 4) O = use a monthly background ozone value 1 = read hourly ozone concentrations from the OZONE. DAT data file ! MOZ = 0 !Monthly ozone concentrations (Used only if MCHEM = 1, 3, or 4 and MOZ = 0 or MOZ = 1 and all hourly 03 data missing) (BCK03) in ppb Default: 12*80. ! BCK03 = 80.00, 80.00 80.00 ! Monthly ammonia concentrations (Used only if MCHEM = 1, or 3) (BCKNH3) in ppb ! BCKNH3 = 10.00, 10.00, 10.00, 10.00 ! Defaul t: 12*10. 10.00, 10.00, 10.00, 10.00, 10.00, 10.00, 10.00, 10.00, Nighttime SO2 loss rate (RNITE1) in percent/hour Default: 0.2 ! RNITE1 = .2 ! Nighttime NOx loss rate (RNITE2) in percent/hour Default: 2.0 ! RNITE2 = 2.0 ! Nighttime HNO3 formation rate (RNITE3) in percent/hour Default: 2.0 ! RNITE3 = 2.0 ! H202 data input option (MH202) Default: (Used only if MAQCHEM = 1) 0 = use a monthly background H202 value 1 = read hourly H202 concentrations from the H202. DAT data file ! MH2O2 = 1 Default: 1 Monthly H202 concentrations (Used only if MOACHEM = 1 and MH202 = 0 or MH202 = 1 and all hourly H202 data missing) (BCKH202) in ppb Default: 12*1. ! BCKH202 = 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00 !

! END!

```
CP01. I NP
```

--- Data for SECONDARY ORGANIC AEROSOL (SOA) Option (used only if MCHEM = 4) The SOA module uses monthly values of: Fine particulate concentration in ug/m^3 (BCKPMF) Organic fraction of fine particulate (OFRAC) VOC / NOX ratio (after reaction) (VCNX) to characterize the air mass when computing the formation of SOA from VOC emissions. Typical values for several distinct air mass types are: Month 1 2 3 4 5 6 7 8 9 10 11 12 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Clean Continental BCKPMF 1. 1. 1 OFRAC 15 15 20 20 20 20 20 20 20 20 20 15 50. 50. 50. 50. 50. VCNX 50. 50. 50. 50. 50. 50. 50 Clean Marine (surface) BCKPMF .5 .5 . OFRAC .25 .25 .3 . 5 30 5 5 5 5 5 5 F 5 30 30 30 30 30 30 30 30 25 50. 50. 50 50 50 50 50 VCNX 50. 50. 50. 50 50 Urban - Iow biogenic (controls present) BCKPMF 30. 30. 30. 30. 30. 30. OFRAC 20 20 25 25 25 25 30. 25 4. 30. 25 30 30 30 30 20 20 20 20 VCNX 4 4 high biogenic (controls present) MF 60. 60. 60. 60. 60. 60. Urban BCKPMF 60 60 60 60. 60. 60 25 15. OFRAC 25 30 30 30 55 15 55 15 55 15. 35 15 35 15. 35 15 25 15 VCNX 15 15 15 15 Regional Plume 20. 20 20. . 25 15. 20. 25 15. BCKPMF 20. 20. 20 20 20 20 20 20 20 35 15 20 15. 40 15 30 15 OFRAC 40 40 30 30 20 15 15 15 VCNX 15. 15 15 Urban - no control s present BCKPMF 100. 100. 100. 100. OFRAC .30 .30 .35 .35 100. 100. 100. 100. 100. 100. 100 100 . 35 . 55 . 55 . 55 . 35 . 35 . 35 . 30 VCNX 2. 2. 2. 2. 2. 2 2 2. Default: Clean Continental

 BCKPMF
 = 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00

 OFRAC
 = 0.15, 0.15, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.15 !

 VCNX
 = 50.00, 50 00 1 ! END! INPUT GROUP: 12 -- Misc. Dispersion and Computational Parameters Horizontal size of puff (m) beyond which time-dependent dispersion equations (Heffter) are used to determine sigma-y and sigma-z (SYTDEP) De Defaul t: 550. ! SYTDEP = 5.5E02 ! Switch for using Heffter equation for sigma z as above (0 = Not use Heffter; 1 = use Heffter (MHFTSZ) Default: 0 ! MHFTSZ = O _ ! Stability class used to determine plume growth rates for puffs above the boundary Default: 5 ! JSUP = 5 ľayer (JSUP) 1 Vertical dispersion constant for stable conditions (k1 in Eqn. 2.7-3) (CONK1) Default: 0.01 ! CONK1 = .01 ! Vertical dispersion constant for neutral/ unstable conditions (k2 in Eqn. 2.7-4) (CONK2) Default: 0.1 ! CONK2 = .1 ! Factor for determining Transition-point from Schulman-Scire to Huber-Snyder Building Downwash scheme (SS used for Hs < Hb + TBD * HL) ! TBD = .5 ! (TBD) Default: 0.5 TBD < 0 ==> al ways use Huber-Snyder TBD = 1.5 ==> al ways use Schulman-Scire TBD = 0.5 ==> ISC Transition-point Range of land use categories for which

Page 12

	CP01	. I NP			
	(IURB1, IURB2)	Defaul t:	10 19	! !	I URB1 = 10 ! I URB2 = 19 !
	Site characterization parameters for singl (needed for METFM = $2, 3, 4, 5$)	e-point Me	t data	fi	les
	Land use category for modeling domain (ILANDUIN)	Defaul t:	20	İ	ILANDUIN = 20 !
	Roughness length (m) for modeling domai (ZOIN)	n Defaul t:	0. 25	İ	ZOIN = .25 !
	Leaf area index for modeling domain (XLAIIN)	Defaul t:	3. 0	İ	XLAIIN = 3.0!
	Elevation above sea level (m) (ELEVIN)	Defaul t:	0. 0	İ	ELEVIN = .0 !
	Latitude (degrees) for met location (XLATIN)	Defaul t:	-999.	ļ	XLATIN = -999.0 !
	Longitude (degrees) for met location (XLONIN)	Defaul t:	-999.	i	XLONIN = -999.0 !
	Specialized information for interpreting s	i ngl e-poi n	t Met c	lat	ta files
	Anemometer height (m) (Used only if MET (ANEMHT)	FM = 2,3) Default:	10.	İ	ANEMHT = 10.0 !
	Form of lateral turbulance data in PROF (Used only if METFM = 4,5 or MTURBVW = (ISIGMAV) 0 = read sigma-theta 1 = read sigma-v	ILE.DAT fi 1 or 3) Default:	le 1	ļ	ISIGMAV = 1 !
	Choice of mixing heights (Used only if (IMIXCTDM) 0 = read PREDICTED mixing heights 1 = read OBSERVED mixing heights	METFM = 4) Default:	0	ļ	IMIXCTDM = 0 !
	Maximum length of a slug (met. grid units) (XMXLEN)	Defaul t:	1.0	İ	XMXLEN = 1.0 !
	Maximum travel distance of a puff/slug (in grid units) during one sampling step (XSAMLEN)	Defaul t:	1.0	İ	XSAMLEN = 1.0 !
	Maximum Number of slugs/puffs release from one source during one time step (MXNEW)	Defaul t:	99	i	MXNEW = 99 !
	Maximum Number of sampling steps for one puff/slug during one time step (MXSAM)	Defaul t:	99	i	MXSAM = 99 !
	Number of iterations used when computing the transport wind for a sampling step that includes gradual rise (for CALMET and PROFILE winds) (NCOUNT)	Defaul t:	2	ļ	NCOUNT = 2 !
	Minimum sigma y for a new puff/slug (m) (SYMIN)	Defaul t:	1. 0	i	SYMIN = 1.0 !
	Minimum sigma z for a new puff/slug (m) (SZMIN)	Defaul t:	1.0	i	SZMIN = 1.0 !
	Default minimum turbulence velocities sigm for each stability class over land and ove (SVMIN(12) and SWMIN(12))	a-v and si r water (m	gma-w /s)		
	Stab Class : A R C D F	 c			WATER
	Default SVMIN : .50, .50, .50, .50, .50, . Default SWMIN : .20, .12, .08, .06, .03, .	50, - 50, .	37, .37 20, .12	- 7, 2,	. 37, . 37, . 37, . 37 . 08, . 06, . 03, . 016
	! SVMIN = 0.500, 0.500, 0.500, 0.500	, 0.500, 0	. 500, 0). 3	370, 0.370, 0.370, 0.370,
0. 370 0. 030	0, 0.370! ! SWMIN = 0.200, 0.120, 0.080, 0.060 0, 0.016!	, 0.030, 0	. 016, 0). 2	200, 0. 120, 0. 080, 0. 060,
	Divergence criterion for dw/dz across puff	,			
	used to initiate adjustment for horizontal convergence (1/s)				
	Fartial adjustment starts at CDIV(1), and full adjustment is reached at CDIV(2)	Dofaul +	0 0 0 0	`	
	(UDI V(2)) Dan	peraurt: e 13	U. U, U. L	J	: UIV = .U, .U !
	Fay	0 10			

CP01 INP Minimum wind speed (m/s) allowed for non-calm conditions. Also used as minimum speed returned when using power-law extrapolation toward surface Default: 0.5 (WSCALM) ! WSCALM = .5 !Maximum mixing height (m) (XMAXZI) Default: 3000. ! XMAXZI = 3000.0 ! Minimum mixing height (m) ! XMINZI = 50.0 ! Default: 50. (XMINZI) Default wind speed classes --5 upper bounds (m/s) are entered; the 6th class has no upper limit (WSCAT(5)) Defaul t ISC RURAL : 1.54, 3.09, 5.14, 8.23, 10.8 (10.8+) Wind Speed Class: 1 2 3 4 5 ! WSCAT = 1.54, 3.09, 5.14, 8.23, 10.80 ! Default wind speed profile power-law exponents for stabilities 1-6 Default : ISC RURAL values ISC RURAL : .07, .07, .10, .15, .35, .55 ISC URBAN : .15, .15, .20, .25, .30, .30 (PLX0(6)) Stability Class : A В С D Е F ! PLX0 = 0.07, 0.07, 0.10, 0.15, 0.35, 0.55 ! Default potential temperature gradient for stable classes E, F (degK/m) (PTGO(2)) Defaul Default: 0.020, 0.035 ! PTG0 = 0.020, (0.035 ! Default plume path coefficients for each stability class (used when option for partial plume height terrain adjustment is selected -- MCTADJ=3) Stability Class : Default PPC : (PPC(6)) А . 50, . 50, . 50, . 50, . 35, . 35 PPC = 0.50, 0.50, 0.50, 0.50, 0.35, 0.35 ! 1 Slug-to-puff transition criterion factor equal to sigma-y/length of slug (SL2PF) Default: 10. ! SL2PF = 10.0 ! Puff-splitting control variables ------VERTICAL SPLIT Number of puffs that result every time a puff is split - nsplit=2 means that 1 puff splits into 2____ (NSPLIT) Defaul t: 3 ! NSPLIT = 3 ! Split is allowed only if last hour's mixing height (m) exceeds a minimum value (ZISPLIT) Default: Default: 100. ! ZI SPLIT = 100.0 ! Split is allowed only if ratio of last hour's mixing ht to the maximum mixing ht experienced by the puff is less than a maximum value (this postpones a split until a nocturnal layer develops) (ROLDMAX) Default: 0.25 ! ROLDMAX = 0.25 !HORI ZONTAL SPLIT Number of puffs that result every time a puff is split - nsplith=5 means that 1 puff splits into 5 $\,$ (NSPLITH) Default: 5 ! NSPLITH = 5 !Minimum sigma-y (Grid Cells Units) of puff before it may be split (SYSPLITH) Defaul ! SYSPLITH = 1.0 ! Defaul t: 1.0 Page 14

Minimum puff elongation rate (SYSPLITH/hr) due to wind shear, before it may be split (SHSPLITH) Default: 2. ! SHSPLITH = 2.0 ! Minimum concentration (g/m^3) of each species in puff before it may be split Enter array of NSPEC values; if a single value is entered, it will be used for ALL species Default: 1.0E-07 ! CNSPLITH = 1.0E-07 ! (CNSPLI TH) Integration control variables -----Fractional convergence criterion for numerical SLUG sampling integration (EPSSLUG) Default: 1.0e 1.0e-04 ! EPSSLUG = 1.0E-04 ! Fractional convergence criterion for numerical AREA source integration (EPSAREA) Defaul t: 1.0e-06 ! EPSAREA = 1.0E-06 ! Trajectory step-length (m) used for numerical rise integration (DSRISE) Default: 1.0 ! DSRISE = 1.0 ! Boundary Condition (BC) Puff control variables ------Minimum height (m) to which BC puffs are mixed as they are emitted (MBCON=2 ONLY). Actual height is reset to the current mixing height at the release point if greater than this minimum. 500. (HTMINBC) Defaul t: ! HTMINBC = 500.0 !Search radius (km) about a receptor for sampling nearest BC puff. BC puffs are typically emitted with a spacing of one grid cell length, so the search radius should be greater than DGRIDKM. (RSAMPBC) Default: 10. ! RSAMPBC ! RSAMPBC = 10.0 ! Near-Surface depletion adjustment to concentration profile used when sampling BC puffs? (MDEPBC) Default: 1 0 = Concentration is NOT adjusted for depletion 1 = Adjust Concentration for depletion ! MDEPBC = 1 ! ! END! INPUT GROUPS: 13a, 13b, 13c, 13d -- Point source parameters Subgroup (13a) Number of point sources with parameters provided below (NPT1) No default ! NPT1 = 0 ! Units used for point source (IPTU) Default: 1 ! IPTU = emissions below 5! g/s 1 = 2 = kg/hr lb/hr 3 = tons/yr Odour Unit * m**3/s (vol. flux of odour compound) Odour Unit * m**3/min metric tons/yr 4 = 5 = 6 = 7 = Number of source-species combinations with variable emissions scaling factors provided below in (13d) (NSPT1) Default: 0 ! NSPT1 = 0 ! Number of point sources with variable emission parameters provided in external file (NPT2) No default ! NPT2 = 0 ! (If NPT2 > 0, these point source emissions are read from the file: PTEMARB. DAT) ! END! Subgroup (13b) POINT SOURCE: CONSTANT DATA Page 15

CP01. I NP

CP01. I NP

				CP01. I	NP				
Source No.	X Coordinate (km)	Y Coordinate (km)	Stack Height (m)	Base Elevation (m)	Stack Diameter (m)	Exit Vel. (m/s)	Exit Temp. (deg. K)	b BI dg. Dwash	c Emission Rates
a Data and t	for each so herefore mu	urce are tre st end with	eated a: an inp	s a separa ut group te	te input s erminator.	subgrou	qı		
SRCNA X SI GYZ ZPLTF	M is a 12- (No defa is an ar (No defa I is an ar (Defaul t M is the p structur	character na ult) ray holding ult) ray holding : 0.,0.) latform heig e that has a bulk of the	the so the so the in the (m) struct	a source urce data l itial sigma for source ficant oper ure such a	isted by a-y and si a area bet as an offs	the co gma-z nced by ween f	olumn head (m) / an isola che surfac	dings ated ce	
FMFAC	The Base and the above the must be the plat downwash (Defaul t is a ver	Elevation i Stack Height e platform). those of the form deck. method) for : 0.0) tical moment	s that s that Build 2PLTFM source	of the sur e release f ding heigh ings on the is used or es with bui x factor ((face (gro neight abo ts entered e platform hly with M lding dow). or 1.0)	bund or bye the in Su MBDW=1 vnwash.	to repres	ot 3c m sent	
	the effe reduce m (Default	ct of rain-c omentum rise : 1.0 fu	caps or e assoc ull mom	other phys iated with entum used)	sical conf the actua)	igurat al exit	tions that velocity	t y.	
b 0. = 1. = 2. = NOTE:	No building Downwash mo Downwash mo must be en	downwash mo deled for bu deled for bu tered as a F	odeled uilding: uilding: REAL nu	s resting o s raised ab mber (i.e.,	on the sur bove the s with dec	face surface cimal p	e (ZPLTFM point)	> 0.)	
c An em Enter model (e.g.	ission rate emission ra ed, but not 1 for g/s)	must be ent ate of zero emitted. l	tered for sei for sei Jnits a	or every po condary pol re specific	ollutant m lutants t ed by IPTL	nodel ec chat ar J	ł. re		
Subaroup (13c)								
	BUILDING D	IMENSION DAT	A FOR	SOURCES SUE	BJECT TO D	OWNWAS	SH 		
Source No.	Effective every 10 d MBDW=2 (PR	building hei egrees. LEN IME downwash	ght, w NGTH, X n option	idth, leng BADJ, and ` n)	th and X/Y YBADJ are	offse only r	et (in me needed fo	a ters) r	
a Build as a an in stack x-axi	ing height, separate in put group t , of the ce s pointing a	width, leng put subgroup erminator. nter of the along the fl	gth, and for ea The X/ upwind ow dire	d X/Y offse ach source Y offset is face of th ection.	et from th and there s the posi ne project	ne sour efore r tion, ced bui	rce are ti nust end v relative Iding, wi	reated with to the ith the	
Subgroup (13d)								
	POINT SOURC	E: VARI ABLE	EMI SSI	a ONS DATA					
Use t rates Skip varia	his subgrou given in 1 sources her tion in sou	p to descrik 3b. Factors e that have rce paramete	be temp s enter consta ers, us	oral varia ed multiply nt emission e PTEMARB.[tions in t y the rate ns. For m DAT and NF	the emi es in f nore el PT2 > (ssi on 13b. aborate).		
I VARY (I VAR	determines Y) 0 =	the type of Constant	°varia	tion, and i Defaul	s source- t: 0	speci f	Fi C:		
	1 = 2 = 3 = 4 =	Diurnal cycl Monthly cycl Hour & Seasc Speed & Stat	e (24 e (12 on (4 g whe b. (6 g fir and	scaling fac scaling fac roups of 24 re first gr roups of 6 st group is the speed Page 1	ctors: hou ctors: mor 4 hourly s roup is DE scaling f s Stabilit classes f 6	urs 1-2 nths 1- scaling C-JAN- factors y Clas nave up	24) -12) g factors, FEB) s, where ss A, oper		

CP01. I NP bounds (m/s) defined in Group 12 (12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+) 5 = Temperature а Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator. _____ INPUT GROUPS: 14a, 14b, 14c, 14d -- Area source parameters _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Subgroup (14a) Number of polygon area sources with parameters specified below (NAR1) No default ! NAR1 = 3 1 Units used for area source emissions below (IARU) Default: 1 ! IARU = 5 ! 1 = 2 = 3 = g/m**2/s g/m**2/s kg/m**2/hr lb/m**2/hr tons/m**2/yr Odour Unit * m/s (vol. flux/m**2 of odour compound) Odour Unit * m/min metric tons/m**2/yr 4 = 5 = 6 = 7 = Number of source-species combinations with variable emissions scaling factors provided below in (14d) (NSAR1) Default: 0 ! NSAR1 = 1 ! Number of buoyant polygon area sources with variable location and emission parameters (NAR2) No default (If NAR2 > 0, ALL parameter data for these sources are read from the file: BAEMARB.DAT) No default ! NAR2 = 0 ! ! END! Subgroup (14b) а AREA SOURCE: CONSTANT DATA b Effect. Initial Source Base Emission Sigma z (m) No. Hei ght Elevation Rates (m) (m) ----_ _ _ _ _ _ _ _ ----_ _ _ _ _ _ _ _ _ _ 1! SRCNAM = TIPF ! 1.5, 279, 0.4, 1EOO ! !END! 1! SRCNAM = LEACH ! 2! 2! 3! Х = 0.1, 287, 0.1, 7E-02 ! ! END! 1.5. 279. 0.4. 3E00 ! ! END! а Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator. b An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by IARU (e.g. 1 for $g/m^{**}2/s$). Subgroup (14c) COORDINATES (km) FOR EACH VERTEX(4) OF EACH POLYGON Source а No. Ordered list of X followed by list of Y, grouped by source _ _ _ _ ! SRCNAM = TIPF ! ! XVERT = 250.517, 1 1 250. 512, 250. 506, 250. 523! Page 17

1	I VVEDT -	5802 703	580	2 716	CP01. I N	P 721	5802	7071		
! END!	SPONAM -	1 FACH 1	509.	2.710,	5072. 1	/ 2 1 ,	5092.	7071		
2 :	! XVERT = ! YVERT =	250. 761, 5892. 966,	250. 5893	696, 3. 027,	250. 710, 5893. (040,	250. 771! 5892.	979!		
!END! 3!	SRCNAM =	GW !		·						
3 3 ! END!	! XVERT = ! YVERT =	250. 567, 5892. 858,	250. 1 5892	561, 2. 870,	250. 579, 5892. 8	381,	250. 586! 5892.	870!		
a Dat and	a for each I therefore	source are must end wi	treate th an	ed as a input	separate group ter	e inp rmina	out subgr ator.	roup		
Subgroup	(14d)									
	AREA SOUR	RCE: VARI ABL	_E EMIS	SSI ONS	DATA					
Use rat Ski var	e this subgr es given in p sources h iation in s	roup to desc n 14b. Fact nere that ha source paran	cribe tors en ave con meters	tempora ntered nstant , use B	ıl variati multiply emissions AEMARB.DA	ons the s. F AT ar	in the e rates in or more nd NAR2 :	emission 14b. elabora → O.	te	
I VA	RY determin	nes the type	e of va	ariatio	on, and is	5 SOL	urce-spec	ci fi c:		
ίv	0 = 1 =	Constant Diurnal d	cvclie	(24 sca	lina fact	tors [.]	hours ?	-24)		
	2 = 3 =	Monthly of Hour & Se	cycl e eason	(12 sca (4 grou	iling fact	tors: hour	months	1-12) ng fact	ors,	
	4 =	Speed & S	Stab.	`whĕre (6 grou	first gro ps of 6 s	oup i scali	s DEC-JA	AN-FEB) ors, whe	re	
				first and th	group is le_speed_c	Stab class	bility Cl ses have	ass A, upper		
	5 =	Temperatu	ure	bounds (12 sca cl asse 0, 5, 45, 50	s (m/s) de iling fact es have up 10, 15, 2 0, 50+)	efine tors, oper 20, 2	ed in Gro where t bounds (25, 30, 3	oup 12 cemperat (C) of: 35, 40,	ure	
! END!		29, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6	6, 6,	I						
 a										
Dat and	a for each I therefore	species are must end wi	e trea th an	ted as input	a separat group ter	te ir rmina	nput subo ator.	group		
					0					
INPUT GR		 15b. 15c	- Line	source	paramete	ers				-
	·									
Subgroup	(15a)									
Num wit par	ber of buoy h variable ameters (NI	yant line so location ar _N2)	ources nd emis	ssi on		No	defaul t	! NLN	2 = 0	İ
(f	NLN2 > 0,	ALL paramet	ter da	ta for		ראח כ	Γ)			
Num	ber of buo	vant line so	ources	(NLINE	S)	No	defaul t	! NLI	NES = 0)
Uni	ts used for	r line sourc	ce		,					
emi	ssions belo	ow g∕s		(ILNU)		Def	Fault: 1	! ILN	U = 1	i
	2 = 3 = 4 -	Kg/hr Ib/hr								
	4 = 5 = 6 -	Odour Unit	* m**; * m**;	3/s (v 3/min	ol. flux	of c	odour cor	pound)		
	7 =	metric tons	s/yr	57 111 11						
Num	ber of sour binations v	rce-species with variabl	е							
emi pro	ssions scal	ing factors v in (15c)	5	(NSLN1) Default	t: 0	! NSLM	V1 = 0	ļ	
P. 0		(100)		(Page 18	3		. 0		

CP01. I NP

Maximum number of segments used to model each line (MXNSEG) Default: 7 ! MXNSEG = 7 ! The following variables are required only if NLINES > 0. used in the buoyant line source plume rise calculations. They are Number of distances at which transitional rise is computed ! NLRISE = 6 ! Default: 6 Average building length (XL) No default ! XL = .0! (in meters) Average building height (HBL) No default ! HBL = .0 ! (in meters) Average building width (WBL) No default ! WBL = .0 ! (in meters) Average line source width (WML) No default ! WML = .0 ! (in meters) No default ! DXL = .0 ! Average separation between buildings (DXL) (in meters) No default ! (in m**4/s**3) Average buoyancy parameter (FPRIMEL) ! FPRIMEL = .0 !! END! Subgroup (15b) BUOYANT LINE SOURCE: CONSTANT DATA Beg. X Beg. Y End. X End. Y Coordinate Coordinate Coordinate Source Rel ease Base Emissi on Flevation No Hei ght Rates (km) (km) (km) (km) (m) (m) _ _ _ _ _ _ _ _ _ а Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator. b An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by ILNTU (e.g. 1 for g/s). Subgroup (15c) BUOYANT LINE SOURCE: VARIABLE EMISSIONS DATA Use this subgroup to describe temporal variations in the emission rates given in 15b. Factors entered multiply the rates in 15b. Skip sources here that have constant emissions. IVARY determines the type of variation, and is source-specific: (IVARY) Default: 0 0 = Constant Constant Diurnal cycle (24 scaling factors: hours 1-24) Monthly cycle (12 scaling factors: months 1-12) Hour & Season (4 groups of 24 hourly scaling factors, where first group is DEC-JAN-FEB) Speed & Stab. (6 groups of 6 scaling factors, where first group is Stability Class A, and the speed classes have upper bounds (m/s) defined in Group 12 Temperature (12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+) 1 = 2 3 = = 4 = 5 = _ _ _ _ _ _ _ _ _ а

а

Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator.

```
CP01. I NP
```

INPUT GROUPS: 16a, 16b, 16c -- Volume source parameters Subgroup (16a) Number of volume sources with parameters provided in 16b,c (NVL1) No default ! NVL1 = 0 Т Units used for volume source emissions below in 16b (IVLU) Default: 1 ! IVLU = 5 1 g/s kg/hr Ib/hr tons/yr Odour Unit * m**3/s (vol. flux of odour compound) Odour Unit * m**3/min matric tons /vr 1 = 2 = 3 = 4 = 5 = 6 = metric tons/yr 7 = Number of source-species combinations with variable emissions scaling factors provided below in (16c) (NSVL1) Default: 0 ! NSVL1 = 0 !Number of volume sources with variable location and emission (NVL2) parameters No default ! NVL2 = 0 1 (If NVL2 > 0, ALL parameter data for these sources are read from the VOLEMARB.DAT file(s)) ! END! _____ Subgroup (16b) - - -VOLUME SOURCE: CONSTANT DATA b Effect. Height Initial l ni ti al Emission Х γ Base Coordinate Coordinate Flevation Sigma y (m) Sigma z Rates (km) (m) (km) (m) (m) а Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator. b An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by IVLU (e.g. 1 for g/s). Subgroup (16c) _ _ _ _ _ _ _ _ _ _ _ _ _ VOLUME SOURCE: VARIABLE EMISSIONS DATA Use this subgroup to describe temporal variations in the emission rates given in 16b. Factors entered multiply the rates in 16b. Skip sources here that have constant emissions. For more elaborate variation in source parameters, use VOLEMARB. DAT and NVL2 > 0. I VAkı (I VARY) O IVARY determines the type of variation, and is source-specific: (IVARY) Default: 1 Constant Diurnal cycle (24 scaling factors: hours 1-24) Monthly cycle (12 scaling factors: months 1-12) Hour & Season (4 groups of 24 hourly scaling factors, where first group is DEC-JAN-FEB) Speed & Stab. (6 groups of 6 scaling factors, where first group is Stability Class A, and the speed classes have upper bounds (m/s) defined in Group 12 Temperature (12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+) Constant = 1 = 2 = 3 = 4 = 5 =
CP01. I NP

а

а Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator.

_____ INPUT GROUPS: 17a & 17b -- Non-gridded (discrete) receptor information

Subgroup (17a)

Number of non-gridded receptors (NREC) No default ! NREC = 13 !

! END!

_ _ _ _ _ _

Subgroup (17b)

NON-GRIDDED (DISCRETE) RECEPTOR DATA

Receptor No.	X Coordinate (km)	Y Coordinate (km)	Ground Elevation (m)	Height Above Grour (m)	b nd
1 ! X = 2 ! X = 3 ! X = 4 ! X = 5 ! X = 6 ! X = 7 ! X = 8 ! X = 9 ! X = 10 ! X = 11 ! X = 12 ! X = 13 ! X =	250. 614, 250. 020, 249. 879, 250. 073, 250. 264, 250. 367, 250. 301, 250. 589, 250. 653, 250. 663, 250. 663, 250. 769, 250. 869, 250. 869, 250. 930,	5893. 099, 5893. 145, 5892. 833, 5892. 705, 5892. 632, 5892. 549, 5892. 209, 5892. 354, 5892. 377, 5892. 331, 5892. 331, 5892. 436, 5892. 475,	287.000, 299.000, 302.000, 294.000, 294.000, 304.000, 294.000, 294.000, 294.000, 294.000, 294.000, 294.000, 294.000, 277.000,	1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500! 1.500!	 ! END! ! END! ! END! ! END! ! END! ! END! ! END! ! END! ! END! ! END! ! END! ! END! ! END! ! END! ! END!

----а

Data for each receptor are treated as a separate input subgroup and therefore must end with an input group terminator.

b Receptor height above ground is optional. If no value is entered, the receptor is placed on the ground.

GHD

180 Lonsdale Street Melbourne, Victoria 3000 T: (03) 8687 8000 F: (03) 8687 8111 E: melmail@ghd.com.au

© GHD 2016

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited. G:\31\33897\WP\251121.docx

Document Status

Revision	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
0	M. Asimakis	T. Pollock	Tellet.	D .Kovacs	Duan	16/05/16

www.ghd.com

